「CLTアプローチ」が正しい答えを与えることは、今までに明らかであると信じています。
「LLNアプローチ」がうまくいかない場所を正確に特定しましょう。
有限ステートメントから始めて、同等に減算できることは明らかです。n−−√1 / n−−√
P (1n−−√∑i = 1nバツ私≤ n個−−√) = P (1n−−√∑i = 1n(X私- 1 )≤ 0 ) = P (1n∑i = 1nバツ私≤ 1 )
したがって、制限が存在する場合、それは同一になります。設定Zn= 1n√∑ni = 1(X私− 1 )
P (1n−−√∑i = 1nバツ私≤ n個−−√) = FZn(0 )= Fバツ¯n(1 )
リムn → ∞FZn(0 )= Φ (0 )= 1 / 2
バツ¯nバツ¯n
バツ¯n1
F1(x )= { 1X ≥ 10x < 1⟹F1(1 )= 1
リムn → ∞Fバツ¯n(1 )= F1(1 )= 1
1F1リムn → ∞Fバツ¯n(1 ) F1(1 )
1 / 2リムn → ∞Fバツ¯n(1 )= 1 / 2
何か新しいことを学びましたか?
やった。LLNは、
リムn → ∞P ( | X¯n− 1 | ⩽ ε ) = 1すべての ε > 0
⟹リムn → ∞[ P( 1-ε< X¯n≤1)+P(1<X¯n≤1+ε)]=1
⟹limn→∞[P(X¯n≤1)+P(1<X¯n≤1+ε)]=1
The LLN does not say how is the probability allocated in the (1−ε,1+ε) interval. What I learned is that, in this class of convergence results, the probability is at the limit allocated equally on the two sides of the centerpoint of the collapsing interval.
The general statement here is, assume
Xn→pθ,h(n)(Xn−θ)→dD(0,V)
where D is some rv with distribution function FD. Then
limn→∞P[Xn≤θ]=limn→∞P[h(n)(Xn−θ)≤0]=FD(0)
...which may not be equal to Fθ(0) (the distribution function of the constant rv).
Also, this is a strong example that, when the distribution function of the limiting random variable has discontinuities, then "convergence in distribution to a random variable" may describe a situation where "the limiting distribution" may disagree with the "distribution of the limiting random variable" at the discontinuity points.
Strictly speaking, the limiting distribution for the continuity points is that of the constant random variable. For the discontinuity points we may be able to calculate the limiting probability, as "separate" entities.