2
分布の平均についての瞬間の直感?
なぜp(x)、3番目と4番目のモーメントのような確率分布のより高いモーメントが、それぞれ歪度と尖度に対応するのかについて、誰かが直感を提供できますか? 特に、平均の3乗または4乗の偏差は、なぜ歪度と尖度の測定値に変換されるのですか?これを関数の3次または4次導関数に関連付ける方法はありますか? 尖度のこの定義を考えてみましょう: Kurtosis(X)=E[(x−μX)4]/σ4Kurtosis(X)=E[(x−μX)4]/σ4Kurtosis(X) = E[(x - \mu_{X})^4] / \sigma^4 繰り返しますが、なぜを上げると「凸凹」が生じるのか、またはが歪むのはなぜかは明らかではありません。魔法のようで神秘的です。(X - μ )3(x−μ)4(x−μ)4(x-\mu)^4(x−μ)3(x−μ)3(x-\mu)^3 編集:クイックフォローアップ。尖度のような指標の中央値ではなく、平均についてモーメントを定義することの利点は何ですか?次のような推定量のプロパティは何ですか? MedianKurtosis(X)=E[(x−x~)4]/σ4MedianKurtosis(X)=E[(x−x~)4]/σ4MedianKurtosis(X) = E[(x - \tilde{x})^4] / \sigma^4 ここで、は中央値です。これはおそらく、平均を捨てる分布の外れ値の影響をあまり受けず、おそらくピーク度のより公平な尺度になるでしょうか?x~x~\tilde{x}