タグ付けされた質問 「risk-aversion」

2
リスクプレミアムの背後にある直観
で講義20 MITのミクロ経済学のコース、50/50賭けはどちらか失うことになりますどこ状況が提案されて$ 100または獲得$の開始富と125を$者がのために自分を保証することをいとわないということが記載されている100 43.75 ドル(100 ドルと 56.25 ドルの差)。この背後にある直感は何ですか? 前もって感謝します!

0
Epstein-Zin設定の相対リスク回避をどのように計算しますか?
\newcommand{\E}{\mathbb{E}} 序文 この質問はに関連している異時点間の代替の弾力性については、この1と絶対的なリスク回避の定義については、この1。(数量によって動機付けすることができるものであれば、相対リスク回避の定義として二番目に近い関連その解く U(C(1−RRA/2))=E[U(C(1−ϵ))∣C].U(C(1−RRA/2))=E[U(C(1−ϵ))∣C]. U(C(1-RRA/2)) = \E[U(C(1-\epsilon))\mid C]. 質問 この質問では 、エプスタイン・ジン選好の相対的リスク回避を計算する方法を知りたいです。 消費配列を聞かせて与えることおよびlet C + T = (CとT、CとT + 1、。。。)。今、私はエプスタイン-罪の好みを持っているとしましょう、 U t(C + t)C=(C0,C1,...)C=(C0,C1,...)C=(C_0, C_1,...)C+t=(Ct,Ct+1,...)Ct+=(Ct,Ct+1,...)C_t^+ = (C_t, C_{t+1}, ...)fは時間アグリゲータであり、Qは、条件付きの確実性等価演算子です。すなわち、 F(C、Q)=((1-β)C1-ρ+βQ1-ρ)1Ut(C+t)Ut=f(Ct,q(Ut+1(C+t+1)))={(1−β)C1−ρt+β(Et[U1−γt+1])1−ρ1−γ}11−ρ,Ut(Ct+)=f(Ct,q(Ut+1(Ct+1+)))Ut={(1−β)Ct1−ρ+β(Et[Ut+11−γ])1−ρ1−γ}11−ρ,\begin{align*} U_t(C_t^+) &= f(C_t, q(U_{t+1}(C_{t+1}^+))) \\ U_t &= \left \{(1-\beta) C_t^{1-\rho} + \beta \left(\E_t[U_{t+1}^{1-\gamma}]\right)^{\frac{1-\rho}{1-\gamma}} \right\}^{\frac{1}{1-\rho}}, \end{align*}fffqqq と QT=Q(UのT+1)=(ET[U 1 - γ T …

3
リスク回避は限界効用の低下を引き起こしますか、またはその逆ですか?
してみましょう世界の可能性のある状態、または人が持つことができる可能性選好の集合とします。レッツ、「ギャンブル」や「宝くじ」、以上の確率分布のすなわち集合の集合。次に、各人はの州の優先順位と宝くじの優先順位を持ちます。フォンノイマンモルゲンシュテルンの定理は、に対する優先順位が特定の合理性公理に従うと仮定すると、優先順位は効用関数u:A→ℝで表すことができると述べています。(この関数は、スカラーの乗算と定数の追加までユニークです。)つまり、どの2つの宝くじでもL_1G (A )A A G (A )G (A )U :A → ℝ L 1あAAG (A )G(A)G(A)あAAあAAG (A )G(A)G(A)G (A )G(A)G(A)u :A → Ru:A→ℝu: A → ℝL1L1L_1そしてL2L2L_2にG (A )G(A)G(A)、あなたが好むL1L1L_1にL2L2L_2場合の期待値場合にのみ、あなたuu下L1L1L_1の期待値よりも大きいあなたuu下L2L2L_2。つまり、効用関数の期待値を最大化します。 ユーティリティ関数の期待値を最大化するからといって、お金のような実際のものの期待値を最大化するという意味ではありません。結局のところ、人々はリスクを嫌うことがよくあります。彼らは「手の中の鳥は茂みの中の2匹の価値がある」と言います。リスク回避とは、ギャンブルを、獲得するお金の期待値よりも低く評価することを意味します。この概念をフォンノイマンモルゲンシュテルン効用関数で表すと、ジェンセンの不等式によって次の結果が得られます。効用関数がお金の凹関数、つまり、あなたがリスクを嫌っているのは、お金の限界効用が減っている程度と同じです。(このPDFの 13ページを参照してください。) 私の質問は、因果関係はどちらの方向に進むのですか?フォンノイマンモルゲンスタンユーティリティ関数の値は、あなたの好みの強さを反映しているか、そしてあなた自身の将来のバージョンの好みよりも裕福で将来価値のある自分自身の好みを割り引くことによるリスク回避ですお金はもっと(ブラッド・デロングがここで示唆するように)?または、因果関係は逆に実行されますか?リスクに対する許容度によって効用関数の形が決まります。これにより、フォンノイマンモルゲンシュテルン効用関数は、設定の相対的な強度について何も通知しませんか?

2
なぜ生命の統計値が存在するのでしょうか?
保険の価格設定や政府の政策分析などの分野では、他の金額と比較するために、人の生命に金額を割り当てる必要があることがよくあります。そのため、経済学者は生命の統計値と呼ばれる測定基準を持っています。これは、ある意味で、人が自分の生命をどれだけ評価するかを定量化します。それは通常、ほとんどの人にとって約1,000万ドルと計算されています。現在、これは文字通り人が人生にかける金額ではありません。その金額は通常、無限大であるためです。どんな金額でも、平均的な人に自分の人生を放棄するように説得することはできず、平均的な人は、自分の人生を救うためにいくらお金を使っても構わないでしょう。したがって、技術的な定義はよりトリッキーです:人の人生の統計値はドルの金額ですXXXすべての確率のためになるように、または少なくとものすべての値のp比較的0に近いが、人が死ぬのチャンスがある状況との間に無関心になり、P、および失うのチャンス状況Xのドルがあるのp。(あなたの死の可能性を減らし、お金を稼ぐことに関して、同等の定義を与えることができます。)pppppppppXXXppp 私の質問は、なぜこの概念が役立つのかではありません。私はその有用性を理解しています。(しゃれは意図されていません。)私の質問は、なぜ生命の統計値が存在する必要があるのですか?つまり、pのすべての値、または0に十分に近いpのすべての値についても、この定義を満たす単一の値が存在する必要があるのはなぜですか。XXXpppppp000 これをより正式に議論しましょう。レッツ可能な好みのセットであり、かつ聞かせてG (Aは)「ギャンブル」以上「宝くじ」の集合とするA。次に、フォンノイマンモルゲンシュテルンの定理は、G (A )に関する人の好みの順序が特定の合理性公理を満たす場合、その人の好みは効用関数で表すことができると述べています。つまり、その任意の宝くじの人のプットという値の期待値であるの確率分布の下で。AAAG(A)G(A)G(A)AAAG(A)G(A)G(A)u:A→Ru:A→ℝu: A → ℝLLLuuuLLL したがって、10ドルを獲得する1%の確率とチョコレートサンデーを獲得する1%の確率の間に無関心で、10ドルを獲得する2%の確率と2%の間に無関心であったとしても、私はまったく驚かないでしょう。チョコレートサンデーを手に入れるチャンス; これは、その人の好みがフォンノイマンモルゲンシュテルンの合理性の公理を満たすことを私に示しているだけです。しかし、1千万ドルの損失の1%の確率と死ぬ1%の確率の間に無関心であった場合、彼らは必然的に1000万ドルの損失の2%の確率と2死亡する可能性の割合。それは、生きたり死んだりすることがフォンノイマンモルゲンシュテルンの公理に適合しないためです。平均は生存のユーティリティを無限大に置き、それでも、彼らは死ぬ小さなリスクに有限の値を割り当てます。だから、生きたり死んだりするリスクを伴う宝くじがフォン・ノイマン・モルゲンシュテルンの公理に従うべき理由はないと思います。 そして経験的には、少なくとも値が十分に小さい場合、生命の統計値は明確に定義された測定可能な量であることが研究によって判明しているようです。これの理由は何ですか?生きて死ぬことのない宝くじが、フォンノイマンモルゲンシュテルンの公理に従うことがある理由は何ですか?ppp

1
起業家とリスク回避
起業家が一般集団よりもリスクを回避するかどうかについては、さまざまな意見があります。一般的に開催された信念は、彼らはそれほどでもあることですが、反対意見は同様に存在します。この見方を裏付けているように思われる英国での小さな調査さえあります。 この点でより実証的な研究はありますか?
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.