8
統合性ギャップの重要性
積分ギャップ(IG)とその限界の重要性を理解するのにいつも苦労しました。IGは、問題の緩和の最適な実際の解(の品質)に対する最適な整数の回答(の品質)の比率です。例として頂点カバー(VC)を考えてみましょう。VCは、次の一連の線形方程式の最適な整数解を見つけることと言えます。 我々は、ゼロ/ 1値の変数を有するxvxvx_v各頂点に対するSをv∈V(G)v∈V(G)v \in V(G)グラフGGG。式は次のとおり0≤xv≤10≤xv≤10 \leq x_v \leq 1のためのv∈V(G)v∈V(G)v\in V(G)、及び1≤xv+xu1≤xv+xu1 \leq x_v+x_u各辺のuv∈E(G)uv∈E(G)uv \in E(G)。我々は最小限に抑えられます値を探している∑v∈V(G)xv∑v∈V(G)xv\sum_{v \in V(G)} x_v。 この問題を緩和すると、000から間の実数値が許可される111ため、解の空間が大きくなり、最適な実解は、求める最適な整数解よりも小さくなります。したがって、整数解を見つけるために、線形計画法から得られた最適な実際の答えに対して「丸め」プロセスを実行する必要があります。最適な整数解は、最適な実数解と丸めプロセスの結果の間になります。IGは、最適な整数解と最適な実数解の比であり、丸め処理については何も言いません。丸めプロセスは(理論上)実際の解を完全に無視し、最適な整数解を直接計算できます。 なぜ人々はIGの限界を証明することに興味があるのですか?