タグ付けされた質問 「cliquewidth」

1
ほとんどのグラフのクリーク幅
(2週間前にこの質問をMathOverflow に投稿しましたが、これまでのところ厳密な回答はありませんでした) 無向単純グラフのグラフ幅測定について質問があります。コグラフ(孤立した頂点から始まる、互いに素な結合と補完の操作によって作成できるグラフ)のクリーク幅は最大2であることがよく知られています(Courcelle et al、Upper bounds to the graphs of graphs)。ここで、固定された負でない整数kを考え、グラフのクラスを考えて、すべてのにの集合があるようにしますがグラフであるようなk個の頂点。グラフクラスは、最大で追加することにより、グラフから構築できるグラフのクラスと見なすこともできるため、GkGk\mathcal{G} _kG=(V,E)∈GkG=(V,E)∈GkG = (V,E) \in \mathcal{G} _kSSSG[V−S]G[V−S]G[V - S]GkGk\mathcal{G} _kkkk頂点、このクラスはcographs +とも呼ばれています。kvkvkv 私の質問は、のグラフのクリーク幅、つまりk個の頂点を削除することでグラフに変換できるグラフの厳密な限界は何ですか?GkGk\mathcal{G}_k 個の頂点を削除してグラフをから取得した場合、ことが知られています。これは、個の頂点を削除することでグラフからコグラフを取得できる場合、であり、したがってグラフのクリーク幅は最大。私は上のこの指数関数的な依存かどうかわからないよ必要です。これに関連して、頂点を削除することによるクリーク幅の最大減少にも興味があります。すなわち、グラフから単一の頂点を削除した場合、クリーク幅はどのくらい減少しますか?GGGHHHkkkcw(H)≤2k(cw(G)+1)cw(H)≤2k(cw(G)+1)cw(H) \leq 2^k (cw(G) + 1)GGGHHHkkkcw(H)≤2k(3+1)cw(H)≤2k(3+1)cw(H) \leq 2^k (3 + 1)GkGk\mathcal{G}_k4∗2k4∗2k4*2^kkkk

1
モジュラー分解とクリーク幅
モジュラー分解とクリーク幅グラフに関するいくつかの概念を理解しようとしています。 この論文(「P4-きちんとグラフに」)、モジュール分解を用いてクリーク数または波長数状最適化問題を解決する方法の証拠があります。G1とG2の答えがわかれば、2つのグラフG1、G2を(互いに素な和または素な和集合を使用して)合成してこれらの問題を解決するのは簡単です。P4-tidyグラフの分解に関するプライムグラフは有界グラフ(つまり、C5、P5など)であるため、これらの「ベースケース」については簡単に解決でき、それから合成については簡単に解決できます。したがって、分解ツリーを使用すると、これらの問題を線形時間で解決できます。 しかし、この手法は、グラフの素数が制限されているグラフクラスで機能すると思われます。次に、この論文「有界クリーク幅のグラフ上の線形時間可解最適化問題」を見つけました。これは、私が探していた一般化を行っているようですが、それをよく理解できませんでした。 私の質問は: 1-分解ツリーのプライムグラフは有界(P4-tidy graphsの場合のように)であり、グラフには「クリーク幅」プロパティが有界であると言うのと同等ですか? 2- 1の答えがNOの場合:グラフ素数の境界を持つグラフのクラス(P4-tidyグラフのような)に関する結果が存在するため、これらすべてのクラスの線形時間で解けるクリーク数のような最適化問題?

1
対数深度を持つクリーク幅式
幅wのグラフツリー分解が与えられると、それを「素敵」にするいくつかの方法があります。特に、ツリーがバイナリで、高さがO (log n )であるツリー分解に変換できることが知られています。これは、分解の幅を最大3 wに保ちながら達成できます。(たとえば、BodlaenderとHagerupによる「有界ツリー幅の最適な高速化を備えた並列アルゴリズム」を参照してください)。したがって、対数深度は、ほとんど無料で取得できるツリー分解のプロパティです。GGGwwwO (ログn )O(ログ⁡n)O(\log n)3 週間3w3w 私の質問は、クリーク幅に対して同様の結果が存在するか、あるいは反例があるかどうかです。言い換えると、k個のラベルを使用したクリーク幅式が与えられた場合、最大f (k )ラベルを使用するGの高さO (log n )のクリーク幅式は常に存在しますか?ここで、高さは自然にクリーク幅式の解析ツリーの高さとして定義されます。GGGkkkO (ログn )O(ログ⁡n)O(\log n)GGGf(k )f(k)f(k) 上記のような文が知られていない場合の例がある -vertexグラフG小さなクリーク幅とkは、構築する唯一の方法ようにGを有するF (K )のラベルが大きいと表現を使用することです深さ?nnnGGGkkkGGGf(k )f(k)f(k)


2
カーディナリティ述語を使用した有界クリーク幅のグラフに関するMSOL最適化問題
CMSOLは、モナド2次論理、つまり、ドメインが頂点とエッジのセットであるグラフのロジックをカウントし、頂点と頂点の隣接関係とエッジと頂点の入射の述語があり、エッジ、頂点、エッジセットと頂点の定量化がありますセットは、述語があるの大きさかどうかを表しあるモジュロ。Cardn,p(S)Cardn,p(S)\textrm{Card}_{n,p}(S)SSSnnnppp Courcelleの有名な定理の場合は、その状態グラフのプロパティがCMSOLで表現され、その後、すべてのグラフのためのG高々木幅のKかどうかを線形時間で決定することができるΠはの木分解することを提供保持し、Gが入力に与えられています。定理の以降のバージョンでは、ツリー分解が入力に与えられるという要件がなくなり(Bodlaenderのアルゴリズムで計算できるため)、決定だけでなく最適化も可能になりました。MSOL式所与すなわちφ (S )我々はまた、最大または最小のセットを計算することができS満たすφをΠΠ\PiGGGkkkΠΠ\PiGGGϕ(S)ϕ(S)\phi(S)SSS。ϕ(S)ϕ(S)\phi(S) 私の質問は、クールセルの定理を有界クリーク幅のグラフに適応させることに関するものです。同様の定理があり、頂点、エッジ、頂点セットを定量化できるが、エッジセットは定量化できないMSOL1がある場合、クリーク幅kのグラフ(所定のクリーク式)が与えられ、すべての固定kについて決定できるグラフか線形時間でGを満たすいくつかのMSOL1式φ。私が見たすべての参照が指すGGGkkkkkkGGGϕϕ\phi Courcelle、Makowsky and Rotics、Theory of Computing Systems、2000による有界クリーク幅のグラフに関する線形時間可解最適化問題。 私はこの論文を読み込もうとしましたが、MSOL1の正確な定義に関して自己完結型ではなく、率直に言って読みにくいです。入力にクリーク式が指定されている場合、グラフのクリーク幅によってパラメーター化されたFPTで正確に最適化できることに関して2つの質問があります。 MSOL1は、ある数を法とする集合のサイズをテストするための述語を許可しますか?Cardn,p(S)Cardn,p(S)\textrm{Card}_{n,p}(S) 式が与えられたときに、クリーク幅によってパラメーター化されたFPTのMSOL1式ϕ (S )を満たす最小/最大サイズセットを見つけることは可能ですか?SSSϕ(S)ϕ(S)\phi(S) これらの両方の質問について、これらの結果を主張するときに引用する正しい参照が何かを知りたいです。前もって感謝します!
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.