指数の家族分布では、平均と分散が常に存在しますか?
スカラー確率変数がpdfをもつベクトルパラメーター指数ファミリーに属していると仮定します。XXX fX(x|θ)=h(x)exp(∑i=1sηi(θ)Ti(x)−A(θ))fX(x|θ)=h(x)exp(∑i=1sηi(θ)Ti(x)−A(θ)) f_X(x|\boldsymbol \theta) = h(x) \exp\left(\sum_{i=1}^s \eta_i({\boldsymbol \theta}) T_i(x) - A({\boldsymbol \theta}) \right) ここで、はパラメーターベクトルで、\ mathbf {T}(x)= \ left(T_1(x)、T_2 (x)、\ cdots、T_s(x)\ right)^ Tは、結合十分統計量です。θ=(θ1,θ2,⋯,θs)Tθ=(θ1,θ2,⋯,θs)T{\boldsymbol \theta} = \left(\theta_1, \theta_2, \cdots, \theta_s \right )^TT(x)=(T1(x),T2(x),⋯,Ts(x))TT(x)=(T1(x),T2(x),⋯,Ts(x))T\mathbf{T}(x)= \left(T_1(x), T_2(x), \cdots,T_s(x) \right)^T 各T_i(x)の平均と分散Ti(x)Ti(x)T_i(x)が存在することを示すことができます。ただし、Xの平均と分散XXX(つまり、E(X)E(X)E(X)とVar(X)Var(X)Var(X))は常に存在しますか?そうでない場合、平均と変数が存在しない、この形式の指数ファミリー分布の例はありますか? ありがとうございました。