バックグラウンド
以前に公開されたデータを含むメタ分析を行っています。多くの場合、処理間の差異は、P値、最小有意差(LSD)、およびその他の統計で報告されますが、分散の直接的な推定値は提供されません。
私が使用しているモデルのコンテキストでは、分散の過大評価は問題ありません。
問題
これはへの変換のリストです。ここでS E = √(Saville 2003)私が検討していること、フィードバックは高く評価されています。以下、私は仮定するα=0.05ので、1- α / 2=0.975 及び変数は通常、特に明記しない限り、分散されています。
質問:
これらの方程式をカプセル化するR関数:
データの例:
data <- data.frame(Y=rep(1,5), stat=rep(1,5), n=rep(4,5), statname=c('SD', 'MSE', 'LSD', 'HSD', 'MSD')
使用例:
transformstats(data)
transformstats
機能:transformstats <- function(data) { ## Transformation of stats to SE ## transform SD to SE if ("SD" %in% data$statname) { sdi <- which(data$statname == "SD") data$stat[sdi] <- data$stat[sdi] / sqrt(data$n[sdi]) data$statname[sdi] <- "SE" } ## transform MSE to SE if ("MSE" %in% data$statname) { msei <- which(data$statname == "MSE") data$stat[msei] <- sqrt (data$stat[msei]/data$n[msei]) data$statname[msei] <- "SE" } ## 95%CI measured from mean to upper or lower CI ## SE = CI/t if ("95%CI" %in% data$statname) { cii <- which(data$statname == '95%CI') data$stat[cii] <- data$stat[cii]/qt(0.975,data$n[cii]) data$statname[cii] <- "SE" } ## Fisher's Least Significant Difference (LSD) ## conservatively assume no within block replication if ("LSD" %in% data$statname) { lsdi <- which(data$statname == "LSD") data$stat[lsdi] <- data$stat[lsdi] / (qt(0.975,data$n[lsdi]) * sqrt( (2 * data$n[lsdi]))) data$statname[lsdi] <- "SE" } ## Tukey's Honestly Significant Difference (HSD), ## conservatively assuming 3 groups being tested so df =2 if ("HSD" %in% data$statname) { hsdi <- which(data$statname == "HSD" & data$n > 1) data$stat[hsdi] <- data$stat[hsdi] / (qtukey(0.975, data$n[lsdi], df = 2)) data$statname[hsdi] <- "SE" } ## MSD Minimum Squared Difference ## MSD = t_{\alpha/2, 2n-2}*SD*sqrt(2/n) ## SE = MSD*n/(t*sqrt(2)) if ("MSD" %in% data$statname) { msdi <- which(data$statname == "MSD") data$stat[msdi] <- data$stat[msdi] * data$n[msdi] / (qt(0.975,2*data$n[lsdi]-2)*sqrt(2)) data$statname[msdi] <- "SE" } if (FALSE %in% c('SE','none') %in% data$statname) { print(paste(trait, ': ERROR!!! data contains untransformed statistics')) } return(data) }
参考文献