2
混合モデルでグループをランダムまたは固定として扱う場合の勾配推定値の大きな不一致
いくつかのモデルパラメーターがいくつかのグループ化因子にわたってランダムに変化すると考えられる場合、ランダム効果(または混合効果)モデルを使用することを理解しています。私は、応答がグループ化因子全体で正規化されて(完全ではないがかなり近い)中心に置かれているが、独立変数xはいかなる方法でも調整されていないモデルに適合することを望んでいます。これにより、次のテスト(作成されたデータを使用)に導かれ、実際に効果があるかどうかを確認しました。ランダムインターセプト(で定義されたグループ間)を使用した1つの混合効果モデルと、固定効果予測子として因子fを使用しfた2つ目の固定効果モデルを実行しました。lmer混合効果モデルと基本関数にRパッケージを使用しましたlm()固定効果モデル用。以下はデータと結果です。 yグループに関係なく、0付近で変化することに注意してください。そして、それxはyグループ内で一貫して変化しますが、y > data y x f 1 -0.5 2 1 2 0.0 3 1 3 0.5 4 1 4 -0.6 -4 2 5 0.0 -3 2 6 0.6 -2 2 7 -0.2 13 3 8 0.1 14 3 9 0.4 15 3 10 -0.5 -15 4 11 -0.1 -14 …