こんにちは私は、マルチレベル/混合モデルの自然な候補のように聞こえる2つの問題を抱えています。より簡単な、導入として試してみたいものは次のとおりです。データはフォームの多くの行のように見えます
x y innergroup outergroup
ここで、xはy(別の数値変数)を回帰する数値共変量であり、各yは内部グループに属し、各内部グループは外部グループにネストされます(つまり、特定の内部グループのすべてのyは同じ外部グループに属します) 。残念ながら、内部グループには多くのレベル(数千)があり、各レベルにはyの観測値が比較的少ないため、この種のモデルが適切であると考えました。私の質問は
この種のマルチレベルの数式を作成するにはどうすればよいですか?
いったんlmerフィットモデル、どのようにして、それから予測するのでしょうか?いくつかの簡単なおもちゃの例に適合しましたが、predict()関数は見つかりませんでした。ほとんどの人は、この種の手法での予測よりも推論に興味があるようです。数百万の行があるため、計算が問題になる可能性がありますが、必要に応じていつでも削減できます。
しばらくは2番目の操作を行う必要はありませんが、考えてみて、遊んでみてください。以前と同様のデータがありますが、xがなく、yは形式の二項変数です。yは、内部グループ内であっても、多くの過剰分散を示します。nのほとんどは2または3(またはそれ以下)であるため、各y iの成功率の推定値を導出するには、ベータ二項収縮推定量(α + k i)/(α + β + n i)、ここでおよび βは、MLEによって各内部グループに対して個別に推定されます。これはある程度適切ですが、データのスパース性は依然として私を悩ませているので、利用可能なすべてのデータを使用したいと思います。1つの観点からは、この問題は共変量がないためより簡単ですが、他の観点からは、二項の性質によりそれはより困難になります。高い(または低い)レベルのガイダンスはありますか?