タグ付けされた質問 「natural-computing」

1
どのくらいの計算能力が立方センチメートルに収まりますか?
この質問は、Aadita Mehraが尋ねたDNAアルゴリズムに関する質問のフォローアップです。 そこのコメントで、ジョー・フィッツシモンズは次のように言った。 これを避けるために、システムの半径は質量に比例して拡大縮小する必要があります。計算能力は、質量内で最大で線形にスケーリングします。したがって、機械の指数関数的な量には指数関数的な半径があります。光よりも速く信号を送ることはできないため、一方から他方への信号は反対側に到達するのに指数関数的に長い時間がかかります。時間。 私の質問には2つの部分があります。 (1)「計算能力は最大で線形に比例して拡大する」などのステートメントを形式化するための最良の方法/方法は何ですか?この声明は本当に議論の余地がないのでしょうか? (2)ステートメントが真であると仮定します。そうであっても、自然がすでに指数関数的な量の前処理を行っていれば、それを利用できるかもしれません。たとえば、「ブルートフォースランダム化」による進化の視覚システムの作成などです。 私はこの種の質問に対するかなりの数のソフト(擬似科学的)回答を聞いて読んでおり、ここでの回答に感謝しますが、私は(1)と(2)がどのように作り直されることができるかに最も興味がありますTCSの厳格さ。

4
DNAアルゴリズムとNP完全性
DNAアルゴリズムとチューリングマシンを使用して定義された複雑度クラスとの関係は何ですか?時間や空間などの複雑さの尺度は、DNAアルゴリズムでどのように対応しますか?それらは、フォンノイマンマシンが実際には現実的に解決できないTSPのようなNP完全問題のインスタンスを解決するために使用できますか?

3
「チューリングマシンを構築できる物理的なもの」の名前はありますか?
コンピュータサイエンスに関する驚くべきことの1つは、物理的な実装が何らかの意味で「無関係」であることです。人々は、リレー、真空管、ディスクリートトランジスタなど、いくつかの異なる基板からコンピューターを構築することに成功しています。すぐに、非線形光学材料、さまざまな生体分子、および他のいくつかの基板からチューリング完全なコンピューターを構築することに成功するかもしれません。原則として、ビリヤードボールコンピューターを構築することが可能です。 ただし、物理的な基板は完全に無関係ではありません。特定のコンポーネントのセット、特にダイオード抵抗ロジックは「不完全」であることがわかっています。電源や相互に接続するコンポーネント の数に関係なく、不可能な非常に単純なことがいくつかあります。行う。(ダイオード抵抗ロジックはAND、ORを実装できますが、NOTを実装できません)。また、コンポーネントを接続する特定の方法-特に、単層パーセプトロンは、「不完全」です。特定の非常に単純なことができないことがあります。(単層パーセプトロンはAND、OR、NOTを実装できますが、XORの実装は失敗します)。 「チューリングマシンを構築できる物理的なもの」について、それほど厄介なフレーズはありますか。または、反対に、「どれだけ多く持っていてもチューリングマシンを形成できない物理的なもの」ですか? しばらくの間、「機能的に完全なセット」または「普遍的なゲートのセット」というフレーズを使用しました-または、数学者と話すときは、「機能的に完全なセットを実装できる物理的なもの」-それは言われていませんまったく正しい。一部のコンポーネントセットは、機能的に完全なセットを実装できます。しかし、これらのコンポーネントだけでチューリング完全なマシンを構築することはできません。たとえば、電球と手動操作の4方向ライトスイッチは、機能的に完全なセット(AND、OR、NOT、XORなど)を実装できます。しかも、1つの出力(電気的または光学的)を次の入力(機械的回転)に入力できないため、完全にライトスイッチと電球だけでチューリング完全な機械を構築することはできません。 関連:「再利用可能な普遍的」という概念の公式名はありますか?そして、「どちらのCPUを構築することができますアウトチップ」の名前はありますか?

5
基本的な力に基づく自然な計算
自然現象に触発された計算のよく知られた例は、量子コンピューターとDNAコンピューターです。 マクスウェルの法則または重力による計算の可能性および/または制限について何が知られていますか? つまり、Maxwellの方程式またはn体問題に対する自然の「迅速な」解を直接汎用アルゴリズムに組み込むことですか。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.