1
任意の分布に対する不可知論的学習
DDD{0,1}d×{0,1}{0,1}d×{0,1}\{0,1\}^d\times \{0,1\}CCCf:{0,1}d→{0,1}f:{0,1}d→{0,1}f:\{0,1\}^d\rightarrow\{0,1\}f∈Cf∈Cf \in CO P T (C 、D )= 分F ∈ C E R R (F 、D )err(f,D)=Pr(x,y)∼D[f(x)≠y]err(f,D)=Pr(x,y)∼D[f(x)≠y]err(f,D) = \Pr_{(x,y) \sim D}[f(x) \neq y]OPT(C,D)=minf∈C err(f,D)OPT(C,D)=minf∈C err(f,D)OPT(C,D) = \min_{f \in C}\ err(f,D) 言うアルゴリズム agnostically学習する上の任意の分布、いずれかの場合にが確率ででき関数見つけるよう、所定の時間およびおよび多項式で区切られたからのサンプルの数。C D 2 / 3 F のE RをR (F 、D )≤ O P T (C 、D )+ ε …