タグ付けされた質問 「graph-theory」

グラフ理論は、オブジェクト間のペアワイズ関係をモデル化するために使用される数学的構造であるグラフの研究です。




1
ハイパーグラフの折れ線グラフの最大クリケ
マルチグラフ(後で、マルチハイパーグラフ)があるとします。エッジクリークは、全ての対の交差する(少なくとも一つの共通の頂点を有する)エッジの集合です。次に、マルチグラフのエッジクリークは、常に次の2つのカテゴリのいずれかに分類されます。CCC 星:のすべてのエッジような頂点がある、それが含まれていますが、CCC 三角形:のすべてのエッジように、3つの頂点が存在する二人の間に進むがCCC これは、最大のエッジクリークを計算するための簡単な時間アルゴリズムにつながります。O (n3)O(n3)O(n^3) すべてのについて、最大エッジサイズrのマルチハイパーグラフで、ハイパーエッジクリークの特定の構造定理を証明し、多項式時間アルゴリズムを取得して最大クリークを見つけることができることを、より一般的に示すことができると確信しています。rrrrrr この結果に関連する何か知っていますか?また、私が念頭に置いているアルゴリズムは非常に高次の多項式です。実行時間またはそれ以上で何かを取得するとよいでしょう。npoly(r)npoly(r)n^{\mathrm{poly}(r)} 最大のエッジクリークがエッジクロマティック数(クロマティックインデックスとも呼ばれます)の下限であるため、これは興味深いものでした。 編集:クロスポストでは、カーネルに関する参照は時間アルゴリズムにつながります。カーネルを推測し、カーネルへのクリークの制限を推測します。22exp(r)nexp(r)22exp(r)nexp(r)2^{2^{\mathrm{exp}(r)}}n^{\mathrm{exp}(r)}

6
最大ウェイトマッチングの一般化について調査しましたか?
たとえば、最大の重みの一致を表示する1つの方法は、各頂点vvvが、一致したエッジの重みに等しいユーティリティfv=w(ev)fv=w(ev)f_v= w(e_v)を取得し、それ以外の場合はゼロを取得することです。 したがって、最大の重みマッチングは、目的を最大化すると見なすことができ∑vfv∑vfv\sum_v f_vます。 重み付けされた多変量または非線形を使用してより一般的な目的関数を検討する最大の重みマッチングの一般化が研究されましたfvfvf_vか? 別の方法で一般化されている他のバリアントが調査されましたか? 該当する場合は、参照を提供してください!
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.