1
再発関係の解決
反復関係解く。 この例の本は、を推測してから、であると誤って主張しています。 T(n)=2T(⌊n/2⌋)+nT(n)=2T(⌊n/2⌋)+nT(n) = 2T(\lfloor n/2 \rfloor) + nT(n)=O(n)T(n)=O(n)T(n) = O(n)T(n)≤cnT(n)≤cnT(n) \leq cn T(n)≤2(c⌊n/2⌋)+n≤cn+n=O(n)⟵ wrong!!T(n)≤2(c⌊n/2⌋)+n≤cn+n=O(n)⟵ wrong!!\qquad \begin{align*} T(n) & \leq 2(c \lfloor n/2 \rfloor ) + n \\ &\leq cn +n \\ &=O(n) \quad \quad \quad \longleftarrow \text{ wrong!!} \end{align*} 以来、 constant.Theエラーである私たちが証明していないことである正確な誘導仮説の形を。ccc 上記では、本の内容を正確に引用しています。ここで私の質問は、なぜにを書けないのか、そしてあり、したがってでしょうか?cn+n=dncn+n=dncn+n=dnd=c+1d=c+1d=c+1T(n)≤dnT(n)≤dnT(n) \leq dnT(n)=O(n)T(n)=O(n)T(n) = O(n) 注意: 正解はT(n)=O(nlogn).T(n)=O(nlogn).T(n) =O(n …