2
いつ(そしてなぜ)分布の(数の)ログを取るべきですか?
たとえば、過去の株価、航空券の価格変動、会社の過去の財務データなど、いくつかの履歴データがあるとします... 今、誰か(または何らかの数式)がやって来て、「配布のログを取得/使用しましょう」と言って、ここに行くのはなぜですか? 質問: そもそも分布のログを取るべきなのはなぜですか? ディストリビューションのログは、元のディストリビューションではできなかった/できなかった「与える/単純化する」ものは何ですか? ログ変換は「ロスレス」ですか?すなわち、対数空間に変換してデータを分析するとき、元の分布についても同じ結論が成立しますか?どうして? そして最後に、分布のログを取得するのはいつですか?どのような条件下でこれを行うことにしますか? 私は本当にログベースの分布(たとえばlognormal)を理解したかったのですが、いつ/なぜアスペクトを理解したことがありません-すなわち、分布のログは正規分布です。それは私に何を伝え、何故わざわざしますか したがって、質問! 更新:@whuberのコメントに従って、私は投稿を見ましたが、独立変数と従属変数のログの間に関係を描くことができるので、何らかの理由で線形回帰でのログ変換の使用とその適用を理解しています。ただし、私の質問は、分布そのものを分析するという意味では一般的です。ログを取り、分布を分析する理由を理解するのに役立つと結論付けることができる関係自体はありません。私は理にかなっていると思います:-/ 回帰分析では、データのタイプ/フィット/分布に制約があり、それを変換して、独立変数と(変換されていない)従属変数間の関係を定義できます。しかし、型/適合/分布の制約がフレームワークで必ずしも適用できない場合(回帰のような)分離の分布に対していつ/なぜそうするのか。明確にすることで混乱するよりも明らかになることを願っています:) この質問は、「なぜ、いつ」に関する明確な答えに値します