すべての可能なペアを使用して正規混合分布を作成する密度推定法の名前は何ですか?
私はちょうど一次元の密度推定値を作成するきちんとした(必ずしも良いとは限りません)方法を考えました、私の質問は: この密度推定方法には名前がありますか?そうでない場合、それは文献の他の方法の特殊なケースですか? ここでの方法である:我々は、ベクターが有するX=[x1,x2,...,xn]X=[x1,x2,...,xn]X = [x_1,x_2,...,x_n]は、推定したい未知の分布から引き出されたと仮定します。これを行う方法は、すべての可能な値のペアを取得し、各ペアに対してを最尤法を使用して正規分布に適合させることです。結果の密度推定値は、結果のすべての法線で構成される混合分布になり、各法線には同じ重みが与えられます。XXX[xi,xj]i≠j[xi,xj]i≠j[x_i,x_j]_{i \neq j} 次の図は、ベクトルこのメソッドを使用する方法を示しています。ここで、円はデータポイント、色付きの法線は可能な各ペアを使用して推定された最尤分布、太い黒線は結果の密度推定(混合分布)を示しています。[−1.3,0.15,0.73,1.4][−1.3,0.15,0.73,1.4][-1.3,0.15,0.73,1.4] ところで、結果の混合分布からサンプルを引き出すRのメソッドを実装するのは本当に簡単です。 # Generating some "data" x <- rnorm(30) # Drawing from the density estimate using the method described above. density_estimate_sample <- replicate(9999, { pair <- sample(x, size = 2) rnorm(1, mean(pair), sd(pair)) }) # Plotting the density estimate compared with # the …