3
代数の条件付き期待の直観
ましょう確率変数与え、確率空間であると -代数条件付き期待値である新しいランダム変数を構築できます。(Ω 、F、μ )(Ω,F,μ)(\Omega,\mathscr{F},\mu)ξ :Ω → Rξ:Ω→R\xi:\Omega \to \mathbb{R}σ 、G ⊆ F E [ ξ | G ]σ\sigmaG⊆F\mathscr{G}\subseteq \mathscr{F}E[ξ|G]E[\xi|\mathscr{G}] について考える直観は何ですか?以下の直感を理解しています。E [ ξ | G ]E[ξ|G]E[\xi|\mathscr{G}] (i) ここで、はイベント(正の確率)です。E [ ξ | A ] E[ξ|A]E[\xi|A]AAA (ii) ここで、は離散確率変数です。E [ ξ | η ] E[ξ|η]E[\xi|\eta]ηη\eta しかし、視覚化することはできません。私はそれの数学を理解しており、視覚化できるより単純なケースを一般化するような方法で定義されていることを理解しています。しかし、それでも私はこの考え方が役に立つとは思いません。それは私にとって不思議なオブジェクトのままです。E [ ξ | G ]E[ξ|G]E[\xi|\mathscr{G}] たとえば、をイベントとし。形成 -代数、によって生成された1。次いで、に等しくなるなら、そして等しいなら。換言すれば、であれば、及び if。μ …