事後選択によるインタラクティブな証明?
計算モデルMPostBQPをPostBQPと同じになるように定義します。ただし、事後選択と最終測定の前に多項式で多くのキュービット測定を許可します。 MPostBQPがPostBQPよりも強力であることを示す証拠を提供できますか? MPostBQP [k]を定義して、最終測定を行う前に、複数ラウンドの測定と事後選択を可能にします。MPostBQP [1] = PostBQPおよびMPostBQP [2] = MPostBQPなどのようにインデックスを選択します。(更新:正式な定義を以下に示します。) アーサー・マーリンのゲームを考えてみましょう。おそらく、この計算モデルでそれらをシミュレートできます。事後選択は、説得力のあるメッセージを生成するマーリンの役割を担うことができ、中間測定は、アーサーの公のコイン投げの役割を果たすことができます。この可能性は私に尋ねさせます: AM [k] MPostBQP [k]はありますか?⊂⊂\subset これは確かにで知られており、MA PPと表示されます。表示するには、AM PPの場合にのみMPostBQP = PPを意味します。AMがPPに含まれていないオラクルに関連するオラクルがあるので、これは私の最初の質問に対して肯定的な答えを与える可能性があります。⊂ K = 2 ⊂k=1k=1k=1⊂⊂\subsetk=2k=2k=2⊂⊂\subset 最後に、多項式の多ラウンドの場合、 PSPACE MPostBQP [poly]はありますか?もしそうなら、それは平等ですか?⊂⊂\subset これは、(少なくとも私にとって)哲学的に興味深いものになるでしょう。なぜなら、「事後選択の魔術師」の「扱いやすい」クラスの問題には、すべてのPSPACE が含まれている(または含まれている)からです。 編集:私はMPostBQPの正式な定義を求められました。(以下を更新しました。) MPostBQP [k]は、多項式サイズの量子回路均一なファミリが存在するのクラスで、入力すると、以下の手順では、場合は少なくとも確率で、場合は最大確率でtrueが生成されます。(ではない)に依存する可能性があるいくつかの選択を可能にする手順は、次のように定義されます。 { C N } N ≥ 1 X 2 / 3がX ∈ L 1 / 3 X …