1
ブルートフォースドローネ三角形分割アルゴリズムの複雑
Mark de Berg等の著書「Computational Geometry:Algorithms and Applications」には、ドロネー三角形分割を計算するための非常に単純なブルートフォースアルゴリズムがあります。このアルゴリズムは、無効なエッジの概念を使用します。有効なドローネ三角形分割では表示されず、他のエッジに置き換える必要があるエッジです。各ステップで、アルゴリズムはこれらの不正なエッジを検出し、不正なエッジがなくなるまで必要な変位(エッジフリップと呼ばれる)を実行します。 アルゴリズムLegalTriangulation(TTT) 入力。いくつかの三角TTT点セットのPPP。 出力。法的三角形分割PPP。 一方、 違法なエッジが含まれているP I 、P jの DOTTTpipjpipjp_ip_j \quadしてみましょうとP I 、P J P lは隣接する2つの三角形ことのp のi のp J。pipjpkpipjpkp_i p_j p_kpipjplpipjplp_i p_j p_lpipjpipjp_ip_j \quadTから削除し、代わりにp k p lを追加します。Tを返します。pipjpipjp_ip_jTTTpkplpkplp_kp_l TTT このアルゴリズムは最悪の場合O(n2)O(n2)O(n^2)時間で実行されると聞きました。ただし、この記述が正しいかどうかは明確ではありません。はいの場合、この上限をどのように証明できますか?