タグ付けされた質問 「repeated-measures」

同じユニット(被験者など)で複数の測定が収集されると、繰り返し測定データが発生します。このタグは[anova]タグと一緒にRM-ANOVAに使用します。


3
対数変換された予測子および/または応答の解釈
従属変数のみ、従属変数と独立変数の両方、または独立変数のみが対数変換されるかどうかの解釈に違いがあるのか​​と思います。 の場合を考えます log(DV) = Intercept + B1*IV + Error IVはパーセントの増加として解釈できますが、 log(DV) = Intercept + B1*log(IV) + Error または私が持っているとき DV = Intercept + B1*log(IV) + Error ?
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

2
反復測定線形混合効果モデルにlmerを使用する
編集2:私はもともと、1つの因子で繰り返し測定を行う2因子ANOVAを実行する必要があると考えていましたが、現在では線形混合効果モデルがデータに対してより適切に機能すると考えています。私は何が起こる必要があるかほとんど知っていると思いますが、まだいくつかの点で混乱しています。 分析する必要がある実験は次のようになります。 被験者はいくつかの治療グループのいずれかに割り当てられました 各被験者の測定は複数日に行われました そう: 被験者は治療内にネストされています 治療は日と交わる (各被験者は1つの治療のみに割り当てられ、各日に被験者ごとに測定が行われます) データセットには次の情報が含まれています。 件名=ブロッキングファクター(ランダムファクター) 日=被験者内または反復測定因子(固定因子) 治療=対象因子間(固定因子) Obs =測定された(従属)変数 UPDATE OK、それで私は統計学者に行って話しましたが、彼はSASユーザーです。彼は、モデルは次のようにすべきだと考えています。 治療+日+被験者(治療)+日*被験者(治療) 明らかに彼の表記法はR構文とは異なりますが、このモデルは次のことを説明することになっています。 治療(固定) 日(固定) The Treatment * Dayインタラクション 治療内にネストされたサブジェクト(ランダム) 「治療内の被験者」と交差した日(ランダム) だから、これは使用する正しい構文ですか? m4 <- lmer(Obs~Treatment*Day + (1+Treatment/Subject) + (1+Day*Treatment/Subject), mydata) 私は特に、「治療の対象」部分と交差した日が正しいかどうかを心配しています。SASに精通している人、または彼のモデルで何が起こっているのかを理解していると確信している人は、R構文での私の悲しい試みが一致するかどうかについてコメントできますか? モデルの構築と構文の記述(回答とコメントで説明)での私の以前の試みは次のとおりです。 m1 <- lmer(Obs ~ Treatment * Day + (1 | Subject), mydata) サブジェクトが治療内にネストされているという事実にどのように対処しますか?以下m1との違い: …

8
変更スコアに対する独立変数の効果をテストするときに、ベースライン測定値を制御変数として含めることは有効ですか?
OLS回帰を実行しようとしています。 DV:1年にわたる重量の変化(初期重量-終了重量) IV:運動するかどうか。 しかし、体重の多い人は、thinnerせた人よりも運動単位あたりの体重が減るのが妥当と思われます。したがって、制御変数を含めたかったのです。 CV:初期開始重量。 ただし、従属変数ANDを制御変数として計算するために両方で初期重みが使用されるようになりました。 これでいいですか?これはOLSの前提に違反しますか?

3
ロジスティック回帰の95%信頼区間を手動で計算することと、Rでconfint()関数を使用することに違いがあるのはなぜですか?
皆さん、私は説明できない奇妙なことに気づきました、できますか?要約すると、ロジスティック回帰モデルで信頼区間を計算する手動のアプローチとR関数confint()は異なる結果をもたらします。 Hosmer&LemeshowのApplied Logistic Regression(第2版)を行ってきました。第3章には、オッズ比と95%の信頼区間を計算する例があります。Rを使用すると、モデルを簡単に再現できます。 Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.8408 0.2551 -3.296 0.00098 *** as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 *** --- Signif. codes: 0 ‘***’ 0.001 …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

5
時間の影響が個人間で機能的な形で異なる縦断的データのモデリング
コンテキスト: 200人の参加者を対象に、20週間にわたって週に1回従属変数(DV)を測定する縦断的研究があると想像してください。私は一般的に興味がありますが、私が考えている典型的なDVには、雇用後の仕事のパフォーマンスや、臨床心理学的介入後のさまざまな幸福度測定が含まれます。 マルチレベルモデリングを使用して、時間とDVの関係をモデル化できることを知っています。また、係数(切片、勾配など)を個人間で変化させ、参加者の特定の値を推定することもできます。しかし、データを視覚的に検査したときに、時間とDVの関係が次のいずれかであることがわかったらどうなるでしょうか。 機能的な形式が異なります(おそらくいくつかは線形であり、他は指数関数的であるか、いくつかは不連続性を持っています) 誤差の分散が異なる(個人によっては、ある時点から次の時点までにより変動しやすい) 質問: このようなモデリングデータにアプローチする良い方法は何でしょうか? 具体的には、どのようなアプローチがさまざまなタイプの関係を識別し、そのタイプに関して個人を分類するのに適していますか? そのような分析のためのRにはどのような実装が存在しますか? これを行う方法に関する参考文献はありますか?教科書または実際のアプリケーションですか?

1
混合効果モデルの多重比較
混合効果モデルを使用していくつかのデータを分析しようとしています。私が収集したデータは、遺伝子型の異なる若い動物の体重の経時変化を表しています。 ここで提案されているアプローチを使用しています:https : //gribblelab.wordpress.com/2009/03/09/repeated-measures-anova-using-r/ 特に、私はソリューション#2を使用しています だから私は次のようなものを持っています require(nlme) model <- lme(weight ~ time * Genotype, random = ~1|Animal/time, data=weights) av <- anova(model) ここで、複数の比較を行いたいと思います。multcomp私ができることを使用して: require(multcomp) comp.geno <- glht(model, linfct=mcp(Genotype="Tukey")) print(summary(comp.geno)) そして、もちろん、時間をかけて同じことができます。 2つの質問があります。 mcpTimeとGenotypeの相互作用を確認するにはどうすればよいですか? 実行するglhtと、次の警告が表示されます。 covariate interactions found -- default contrast might be inappropriate どういう意味ですか?安全に無視できますか?それともそれを避けるために何をすべきですか? 編集: 私は言うこのPDFを見つけました: この場合、対象のパラメーターを自動的に決定することは不可能であるため、multcompのmcp()は、デフォルトで、共変量と相互作用を無視して、主効果のみの比較を生成します。バージョン1.1-2以降、相互作用項と共変量の平均化を指定するには、それぞれ引数Interaction_average = TRUEとcovariate_average = TRUEを使用します。一方、1.0-0より古いバージョンは相互作用項の平均化を自動的に行います。ただし、ユーザーには、必要なコントラストのセットを手動で書き出すことをお勧めします。デフォルトのコントラストの測定値に疑問がある場合はいつでもこれを行う必要があります。これは通常、高次の相互作用項を持つモデルで発生します。この問題に関するさらなる議論と例については、Hsu(1996)のChapter〜7とSearle(1971)のChapter〜7.3を参照してください。 私はそれらの本にアクセスできませんが、おそらく誰かがここにいますか?

1
lmerモデルからの効果の再現性の計算
混合効果モデリングによる測定の再現性(別名信頼性、別名クラス内相関)の計算方法を説明するこの論文に出会ったばかりです。Rコードは次のようになります。 #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability R = intercept_var/(intercept_var+residual_var) #compute n0, the repeatability adjustment n = as.data.frame(table(my_data$unit)) k = nrow(n) N = sum(n$Freq) n0 = (N-(sum(n$Freq^2)/N))/(k-1) #compute the adjusted repeatability Rn = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

5
生物学、心理学、医学でlmerを使用した混合モデル分析のレポート例は?
一般的なコンセンサスはlmer()、古典的なANOVAの代わりにRを介して混合モデルを使用することであると思われるため(不均衡な設計、交差ランダム効果など、よく引用される理由により)、データで試してみたいと思います。ただし、スーパーバイザー(最終的にp値を使用した従来の分析を期待している)または後でレビューアーにこのアプローチを「販売」できるかどうか心配です。 混合モデルを使用したりlmer()、フィールド生物学、心理学、医学の反復測定や複数の被験者内および被験者間設計などの異なる設計に使用した、公開された記事の良い例をお勧めしますか?

3
MANOVAと反復測定ANOVAの違いは?
ある要因(実験条件など)に対する反復測定ANOVAとMANOVAの違いは何ですか? 特に、私が偶然見つけたあるウェブサイトは、MANOVAが、ANOVAが繰り返し測定するのと同じ球形度の仮定をしないことを示唆しました、それは本当ですか? もしそうなら、なぜ単にMANOVAを使用しないのですか? 複数のDVで繰り返し測定ANOVAを実行しようとしていますが、適切なアプローチは何ですか?

2
なぜlmeとaovはRの反復測定ANOVAに対して異なる結果を返すのですか?
ezパッケージの使用からlme反復測定ANOVA に移行しようとしています(カスタムコントラストをで使用できるようになるとよいのですがlme)。 このブログ投稿からのアドバイスに従って、aov(ez要求された場合のように)との両方を使用して同じモデルをセットアップすることができましたlme。ただし、その投稿で示されている例では、F値はaovとの間で完全に一致lmeしています(チェックし、一致しています)が、これは私のデータには当てはまりません。がFの -値が類似している、彼らは同じではありません。 aov1.3399のf値をlme返し、1.36264を返します。aovこれは「正しい」結果として受け入れます。これもSPSSが返すものです(そしてこれが私のフィールド/スーパーバイザーにとって重要なことです)。 質問: この違いが存在する理由lmeと、信頼できる結果を提供するために私がどのように使用できるかを誰かが説明できれば素晴らしいと思います。(「正しい」結果が得られれば、このタイプのもののlmer代わりに喜んで使用しますlme。しかし、私はこれまで使用していません。) この問題を解決した後、コントラスト分析を実行したいと思います。特に、最初の2つのレベルの因子(つまりc("MP", "MT"))をプールし、これを3番目のレベルの因子(つまり)と比較することに興味があり"AC"ます。さらに、因子の第四レベル(すなわち、対第三のテスト"AC"対"DA")。 データ: tau.base <- structure(list(id = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, …

3
Rを使用した反復測定によるANOVA後の事後検定
次のように、Rで反復測定ANOVAを実行しました。 aov_velocity = aov(Velocity ~ Material + Error(Subject/(Material)), data=scrd) summary(aov_velocity) Rのどの構文を使用して、反復測定によるANOVAの後に事後検定を実行できますか? ボンフェローニ補正によるテューキーのテストは適切でしょうか?もしそうなら、これをRでどのように行うことができますか?

2
固定効果をランダムな効果にネストするのは理にかなっていますか、それともR(aovとlmer)で反復測定をコーディングするのは意味がありますか?
私は@conjugatepriorによるlm / lmer R公式のこの概要を見ていて、次のエントリで混乱しました: ここで、Aはランダムですが、Bは固定され、BはA内にネストされていると仮定します。 aov(Y ~ B + Error(A/B), data=d) lmer(Y ~ B + (1 | A:B), data=d) 同じケースについて、以下の類似した混合モデル式が提供されています。 意味がよくわかりません。被験者をいくつかのグループに分割する実験では、固定因子(グループ)内にランダム因子(被験者)をネストします。しかし、固定因子をランダム因子内にどのようにネストできますか?ランダムなサブジェクト内にネストされた固定された何か?それも可能ですか?それが不可能な場合、これらのR式は意味をなしますか? この概要は、R での反復測定に関するこのチュートリアルに基づいて、RでANOVAを実行するパーソナリティプロジェクトのページに部分的に基づいていると述べられています。そこで、反復測定ANOVAの次の例を示します。 aov(Recall ~ Valence + Error(Subject/Valence), data.ex3) ここでは、被験者にさまざまな価数の単語(3つのレベルを持つ因子)が提示され、その想起時間が測定されます。各主題には、3つのすべての価数レベルの単語が表示されます。私は(それがあたりとして、交差表示されます。この設計で入れ子に何も表示されません。ここでは素晴らしい答え)、と私は単純にそれを思うだろうように、Error(Subject)または(1 | Subject)このような場合には適切なランダムな用語でなければなりません。Subject/Valence「ネスティングは」(?)混乱しています。 私はそれValenceが被験者内要因であることを理解していることに注意してください。しかし、それは被験者内の「ネストされた」要因ではないと思います(すべての被験者がの3つのレベルすべてを経験するためValence)。 更新。Rの反復測定ANOVAのコーディングに関するCVに関する質問を調査しています。 ここで、以下は固定被験者内/反復測定Aおよびランダムに使用されますsubject。 summary(aov(Y ~ A + Error(subject/A), data = d)) anova(lme(Y ~ A, random = ~1|subject, data …

1
5人の被験者の100個の測定値が、100人の被験者の5個の測定値よりもはるかに少ない情報を提供することを示す
会議で、私は次の声明を耳にしました。 5人の被験者の100の測定値は、100人の被験者の5つの測定値よりもはるかに少ない情報を提供します。 これが本当であることは明らかですが、数学的にどのように証明できるのか疑問に思っていました...線形混合モデルを使用できると思います。ただし、それらの推定に使用される数学についてはあまり知りません(lmer4LMMおよびGLMMで実行するだけbmrsです)。これが真実である例を教えてください。Rの一部のコードよりも、いくつかの式を使用した回答を希望します。たとえば、正規分布のランダムインターセプトとスロープを持つ線形混合モデルなど、簡単な設定を想定してください。 PS LMMを含まない数学ベースの回答も大丈夫でしょう。LMMは、より多くの被験者からのより少ない測定値が少数の被験者からのより多くの測定値よりも優れている理由を説明するための自然なツールのように思えたため、LMMについて考えました。

5
被験者内テストのポストホック?
被験者内テストのポストホックを実施するための好ましい方法は何ですか?テューキーのHSDが採用されている出版物を見たことがありますが、ケッペルとマクスウェルとデラニーのレビューは、これらの設計の球形性の違反がエラー用語を不正確にし、このアプローチに問題があることを示唆しています。Maxwell&Delaneyは彼らの本の問題へのアプローチを提供しますが、どの統計パッケージでもそのようにそれを見たことがありません。彼らが提供するアプローチは適切ですか?複数のペアのサンプルt検定でのBonferroniまたはSidakの補正は妥当ですか?受け入れられる答えはezANOVA、ezパッケージ内の関数によって生成される単純、多方向、および混合設計で事後的に実行できる一般的なRコードと、レビューアーに合格する可能性が高い適切な引用を提供します。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.