1
ネグ二項とジェフリーズ・プリアー
負の二項分布のジェフリーズの事前分布を取得しようとしています。どこが悪いのかわからないので、誰かが指摘してくれると助かります。 さて、状況ように、このです。私は二項と負の二項を用いて得られた事前分布を比較するために午前、(両方の場合に)がある場合試験およびMの成功は。二項式の場合は正しい答えが得られますが、負の二項式の場合は得られません。んnnメートルmm レッツ・コールジェフリーズの事前。そして、πJ(θ )πJ(θ)\pi_J(\theta) πJ(θ )∝ [ I(θ )]1 / 2。πJ(θ)∝[I(θ)]1/2. \pi_J(\theta)\propto [I(\theta)]^{1/2}. 規則性の条件の下で(指数関数的なファミリーを扱っているので満たされます)、 ここで、負の二項のために、Nであり、X成功の総数が上記式(中mは固定されて、N)ではありません。分布-私は思う-は私(θ )= − E(∂2ログL (θ | x )∂θ2)I(θ)=−E(∂2logL(θ|x)∂θ2) I(\theta)=-E\left(\frac{\partial^2 \log L(\theta|x)}{\partial \theta^2}\right) んnnバツxxmmmnnn p(m|θ)∝θm(1−θ)n−mp(m|θ)∝θm(1−θ)n−m p(m|\theta)\propto\theta^m(1-\theta)^{n-m} θθ\thetammmmmm L(θ|n)∝θm(1−θ)n−mlogL(θ|n)=mlogθ+(n−m)log(1−θ)∂logL(θ|n)∂θ=mθ−n−m1−θ∂2logL(θ|n)∂θ2=−mθ2−n−m(1−θ)2L(θ|n)∝θm(1−θ)n−mlogL(θ|n)=mlogθ+(n−m)log(1−θ)∂logL(θ|n)∂θ=mθ−n−m1−θ∂2logL(θ|n)∂θ2=−mθ2−n−m(1−θ)2 L(\theta|n)\propto\theta^m(1-\theta)^{n-m}\\ \log L(\theta|n)=m\log\theta +(n-m)\log (1-\theta)\\ \frac{\partial\log L(\theta|n)}{\partial \theta}=\frac{m}{\theta}-\frac{n-m}{1-\theta}\\ \frac{\partial^2\log L(\theta|n)}{\partial \theta^2}=-\frac{m}{\theta^2}-\frac{n-m}{(1-\theta)^2} I(θ)=−E(∂2logL(θ|n)∂θ2)=mθ2+E(n)−m(1−θ)2=mθ2+mθ1−θ−m(1−θ)2=m(1−θ)2+mθ3(1−θ)−mθ2θ2(1−θ)2=m(1−2θ)+mθ3(1−θ)θ2(1−θ)2=m(1−2θ)(1−θ)+mθ3θ2(1−θ)3=m(1−3θ+2θ2+θ3)θ2(1−θ)3∝1−3θ+2θ2+θ3θ2(1−θ)3I(θ)=−E(∂2logL(θ|n)∂θ2)=mθ2+E(n)−m(1−θ)2=mθ2+mθ1−θ−m(1−θ)2=m(1−θ)2+mθ3(1−θ)−mθ2θ2(1−θ)2=m(1−2θ)+mθ3(1−θ)θ2(1−θ)2=m(1−2θ)(1−θ)+mθ3θ2(1−θ)3=m(1−3θ+2θ2+θ3)θ2(1−θ)3∝1−3θ+2θ2+θ3θ2(1−θ)3 I(\theta)=-E\left(\frac{\partial^2\log L(\theta|n)}{\partial \theta^2}\right)=\frac{m}{\theta^2}+\frac{E(n)-m}{(1-\theta)^2}=\frac{m}{\theta^2}+\frac{\frac{m\theta}{1-\theta}-m}{(1-\theta)^2}\\ =\frac{m(1-\theta)^2+\frac{m\theta^3}{(1-\theta)}-m\theta^2}{\theta^2(1-\theta)^2}=\frac{m(1-2\theta)+\frac{m\theta^3}{(1-\theta)}}{\theta^2(1-\theta)^2}\\ =\frac{m(1-2\theta)(1-\theta)+m\theta^3}{\theta^2(1-\theta)^3}=\frac{m(1-3\theta+2\theta^2+\theta^3)}{\theta^2(1-\theta)^3}\\ \propto\frac{1-3\theta+2\theta^2+\theta^3}{\theta^2(1-\theta)^3} しかし、これは私に正しい答えを与えません。正解は …