3
ロジスティック回帰の95%信頼区間を手動で計算することと、Rでconfint()関数を使用することに違いがあるのはなぜですか?
皆さん、私は説明できない奇妙なことに気づきました、できますか?要約すると、ロジスティック回帰モデルで信頼区間を計算する手動のアプローチとR関数confint()は異なる結果をもたらします。 Hosmer&LemeshowのApplied Logistic Regression(第2版)を行ってきました。第3章には、オッズ比と95%の信頼区間を計算する例があります。Rを使用すると、モデルを簡単に再現できます。 Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.8408 0.2551 -3.296 0.00098 *** as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 *** --- Signif. codes: 0 ‘***’ 0.001 …
34
r
regression
logistic
confidence-interval
profile-likelihood
correlation
mcmc
error
mixture
measurement
data-augmentation
r
logistic
goodness-of-fit
r
time-series
exponential
descriptive-statistics
average
expected-value
data-visualization
anova
teaching
hypothesis-testing
multivariate-analysis
r
r
mixed-model
clustering
categorical-data
unsupervised-learning
r
logistic
anova
binomial
estimation
variance
expected-value
r
r
anova
mixed-model
multiple-comparisons
repeated-measures
project-management
r
poisson-distribution
control-chart
project-management
regression
residuals
r
distributions
data-visualization
r
unbiased-estimator
kurtosis
expected-value
regression
spss
meta-analysis
r
censoring
regression
classification
data-mining
mixture