タグ付けされた質問 「frequentist」

推論への常習的アプローチでは、統計的手順は、データを生成したと見なされたプロセスの繰り返しの仮想的な長期にわたるパフォーマンスによって評価されます。

5
ベイジアンは、彼らのアプローチが一般化/頻繁なアプローチと重複するケースがあると主張しますか?
ベイジアンは、彼らのアプローチが頻繁なアプローチを一般化すると主張することがあります。なぜなら、情報のない事前分布を使用できるため、典型的な頻繁なモデル構造を回復できるからです。 この議論が実際に使用されている場合、誰かが私にこの議論について読むことができる場所を紹介してもらえますか? 編集:この質問は、おそらく私がそれを言い表すつもりではなかった言い回しです。問題は、「ベイジアンアプローチと頻度主義的アプローチが重なり合う/交差する/特定の事前分布を使用して共通するものがある場合の議論への参照があるかどうか」です。1つの例は、不適切な事前を使用することですが、これは氷山の一角にすぎないと確信しています。p(θ)=1p(θ)=1p(\theta) = 1

6
を最大化する点推定を使用する場合、それはあなたの哲学について何と言っていますか?(フリークエンシーまたはベイジアンまたは他の何か?)
誰かが言ったら 「この方法は、を最大化するパラメーターのポイント推定MLEを使用するため、頻度が高く、さらにベイジアンではありません。」P(x|θ)P(x|θ)\mathrm{P}(x|\theta) 同意しますか? 背景に関する最新情報:最近、頻繁に投稿されると主張する論文を読みました。私は彼らの主張に同意しない、せいぜい曖昧だと思う。この論文では、MLE(またはMAP)について明示的に言及していません。彼らは単にポイントの推定値を取得し、このポイントの推定値が真であるかのように単純に進みます。彼らはしますませんこの推定量のサンプリング分布、またはそのような何かの分析を行います。モデルは非常に複雑であるため、このような分析はおそらく不可能です。いずれの時点でも「後」という言葉は使用していません。彼らは、額面価格でこのポイント推定値を取得し、関心のある主要トピックである欠落データの推測に進みます。彼らの哲学には何があるかを示唆するアプローチは彼らのアプローチにはないと思います。彼らは頻繁になりたいと思っていたかもしれませんが(袖に哲学をつける義務があると感じているため)、実際のアプローチは非常に単純/便利/怠/で曖昧です。私は今、この研究にはその背後にある哲学は何もないと言う傾向があります。代わりに、彼らの態度はより実用的または便利だったと思う: 「データを観測し、欠落データzを推定したい。zとxの関係を制御するパラメーターθがあります。目的を達成するための手段を除き、θはあまり気にしません。私はのために見積もり持っθ、それはそれが簡単に予測することになりますZをからのxを、私はの点推定値を選択します。θを、それは便利ですので、特に私が選ぶだろう、θ最大P(X | θを)。」xxxzzzθθ\thetazzzxxxθθ\thetaθθ\thetazzzxxxθθ\thetaθ^θ^\hat{\theta}P(x|θ)P(x|θ)\mathrm{P}(x|\theta) 不偏推定量 のアイデア明らかにFrequentist概念です。これは、データを条件とせず、パラメーターのすべての値を保持する素晴らしいプロパティ(不偏)を記述するためです。 ベイジアン手法では、データとパラメーターの役割は逆になります。特に、現在、観測されたデータを条件として、パラメーターの値について推論を進めています。これには事前の準備が必要です。 これまでのところこれでいいのですが、MLE(Maximum Likelihood Estimate)がこれに適合するのはどこですか?私は、多くの人がそれが周波数主義者である(またはより正確には、ベイジアンではない)と感じているという印象を受けます。しかし、観測データを取得し、を最大化するパラメーターを見つけることを含むため、ベイジアンであると感じています。MLEは暗黙的に均一な事前使用とデータの条件付けを使用し、P (p a r a m e t eP(data|parameter)P(data|parameter)P(data | parameter)。MLEがフリークエンティストとベイジアンの両方に見えると言ってもいいですか?または、すべての単純なツールは、これら2つのカテゴリのいずれかに正確に該当する必要がありますか?P(parameter|data)P(parameter|data)P(parameter | data) MLEは一貫していますていますが、一貫性はベイジアンのアイデアとして提示できると思います。任意の大きなサンプルが与えられると、推定値は正解に収束します。「推定値は真の値に等しい」というステートメントは、パラメーターのすべての値に当てはまります。興味深いのは、観測されたデータを条件にしてベイジアンにする場合にも、このステートメントが当てはまることです。この興味深いことは、MLEには当てはまりますが、公平な推定量には当てはまりません。 これが、MLEが周波数主義者として記述される可能性のあるメソッドの「最もベイジアン」であると感じる理由です。 とにかく、有限のサンプルサイズを含む、ほとんどのフリークエンティストの特性(不偏性など)はすべての場合に適用されます。一貫性が不可能なシナリオ(1つの実験内の無限のサンプル)でのみ成立するという事実は、一貫性がそのような有用な特性ではないことを示唆しています。 現実的な(つまり有限の)サンプルが与えられた場合、MLEに当てはまるFrequentistプロパティはありますか?そうでない場合、MLEは実際にはフリークエンティストではありません。

5
信頼区間は役に立ちますか?
頻出統計では、95%信頼区間は、時間を生成する手順であり、無限の回数を繰り返すと、95%の時間で真のパラメーターが含まれます。なぜこれが便利なのですか? 信頼区間はしばしば誤解されます。これらは、パラメーターが含まれていることを95%確実にすることができる間隔ではありません(同様のベイズ信頼性間隔を使用している場合を除く)。信頼区間は、私にとって餌とスイッチのように感じます。 私が考えることができる1つの使用例は、パラメーターがその値であるという帰無仮説を棄却できなかった値の範囲を提供することです。p値はこの情報を提供しませんか?それほど誤解を招くことなく、 つまり、信頼区間が必要なのはなぜですか?正しく解釈すると、それらはどのように役立ちますか?

1
R / mgcv:なぜte()とti()テンソル積が異なる表面を生成するのですか?
のmgcvパッケージにRは、テンソル積の相互作用をフィッティングするための2つの関数がte()ありti()ます。私は2つの作業の基本的な分業を理解しています(非線形の相互作用を当てはめるか、この相互作用を主効果と相互作用に分解するか)。私が理解していないのは、なぜte(x1, x2)、そしてti(x1) + ti(x2) + ti(x1, x2)(わずかに)異なる結果を生成するのかということです。 MWE(から適応?ti): require(mgcv) test1 <- function(x,z,sx=0.3,sz=0.4) { x <- x*20 (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+ 0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2)) } n <- 500 x <- runif(n)/20;z <- runif(n); xs <- seq(0,1,length=30)/20;zs <- seq(0,1,length=30) pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30))) truth <- matrix(test1(pr$x,pr$z),30,30) f <- test1(x,z) y <- f + rnorm(n)*0.2 par(mfrow = c(2,2)) # …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
頻出者のサンプリング分布を回帰設定でベイズ事後として解釈できないのはいつですか?
私の実際の質問は最後の2つの段落にありますが、それらに動機を与えるために: 既知の分散を持つ正規分布に従う確率変数の平均を推定しようとしている場合、平均に前に一様を置くと、尤度関数に比例する事後分布が得られることを読みました。これらの状況では、ベイジアン信頼区間は頻出信頼区間と完全に重なり、ベイジアン最大事後推定値は頻出最大尤度推定値と等しくなります。 単純な線形回帰設定では、 Y=Xβ+ϵ,ϵ∼N(0,σ2)Y=Xβ+ϵ,ϵ∼N(0,σ2)Y = \textbf{X}\beta+\epsilon, \hspace{1cm} \epsilon\sim N(0,\sigma^2) 上に均一な前入れと逆ガンマ前にσ 2後部の小さいパラメータ値の結果とβ M A P frequentistに非常に類似してβ M L E、及び事後配布のための信頼区間をβ | Xは、最尤推定値の周囲の信頼区間に非常に似ています。彼らはまったく同じではありませんので、上の前σ 2ββ\betaσ2σ2\sigma^2β^MAPβ^MAP\hat\beta^{MAP}β^MLEβ^MLE\hat\beta^{MLE}β|Xβ|X\beta|Xσ2σ2\sigma^2事後推定は矛盾の別のソースをご紹介しますMCMCシミュレーションを介して行われますが、周りのベイズの信頼区間あれば影響の少量を発揮し、β M A Pと周りfrequentist信頼区間β M L Eはなります互いにかなり近く、そしてもちろん、サンプルサイズが増加するにつれて、可能性の影響が前のもののそれを支配するように成長するにつれて、それらは収束するはずです。β^MAPβ^MAP\hat\beta^{MAP}β^MLEβ^MLE\hat\beta^{MLE} しかし、これらの同等性が成り立たない退行状況もあると私は読んだ。たとえば、変量効果のある階層回帰、またはロジスティック回帰-これらは、私が理解しているように、「良い」目的または参照の事前分布がない状況です。 だから私の一般的な質問はこれです-私がについて推論したいと仮定しますP(β|X)P(β|X)P(\beta|X)組み込む必要のある事前情報がないため、これらの状況で頻出の最尤推定を続行し、結果の係数推定と標準誤差をベイジアンMAP推定と標準偏差として解釈して、これらを暗黙的に処理できないのはなぜですか?そのような事後につながるだろう事前の明確な定式化を見つけることを試みることなしに「有益ではない」に違いない事前からの「事後」推定は?一般に、回帰分析の領域では、これらの線に沿って(事後のように可能性を処理することで)続行しても問題ないのはいつですか。準尤度法など、尤度ベースではない頻出法についてはどうでしょうか。 答えは、推論の対象が係数点の推定であるか、係数が特定の範囲内にある確率であるか、または予測分布の量であるかによって異なりますか?

2
ベイジアンはどのようにしてモンテカルロシミュレーション法を使用してメソッドを検証しますか?
背景:私は社会心理学の博士号を取得しており、理論的な統計と数学は私の定量的な授業ではほとんどカバーされていません。学部と大学院を通して、私は(おそらく社会科学の多くの人と同じように)「古典的な」頻出主義の枠組みを通じて教えられました。今、私はまた、Rを愛し、メソッドの作業が行うことを確認するためにシミュレーション手法を使用しての道を数学的な証明よりも私には感覚的です(ここでも、理論的な統計ではなく、量的社会科学の背景)。頻度論的手法とシミュレーション手法を組み合わせることは、私にとって非常に意味のあることです。常連客は確率を長期的なオッズと見なしているためです(たとえば、これを任意の回数実行すると、50%の確率で発生し、50%の確率になります)。モンテカルロ法でこの長期をシミュレーションできます! 合併症:学部生以来、ベイズ法に非常に気づいていて、人生の中でベイズ側に電話をかけてくる人が常にいて、結果の解釈が簡単で、データの代わりに仮説の確率が得られると言ってきました仮説などを与えられました。私は本当にこれに夢中になって、ベイジアンクラスを取り、いくつかのベイジアンの本や論文を読み、現在はスタンとそれに関連するRパッケージにかなり精通しています。 Mayoに入る:「Bayesianはおそらく未来の道だ」としばらく考えた後、私はDeborah Mayoの統計的推論をSevere Testingとして読みました。彼女は本の最初でどちらか一方を選ぶことはないと言いますが、そうします:彼女は常習者であり、本の多くは頻出主義の方法論を擁護しています。私は、彼女が証拠を見る方法が有効であると私たちが考えるかどうかの議論に必ずしも入りたくありませんが、これは私に考えさせました:ベイズが宣伝されているすべては本当にですか?つまり、ベイズの群衆はそれ自体が分裂しているため、ベイジアンフレームワークでデータを分析するための「正しい」方法をよく知りません。通常、私は単に使用しますrstanarm現在のポイントの推定値と信頼できる区間...これは、頻繁に頻度論者の推定値と信頼区間と一致します。私はモデル比較を行うかもしれませんが、ベイズ因子を事後確率比較などとして説明することは常に恐れています。 もっと考える:メイヨーの本を通して私がずっと考えていたのは次のとおりです。コンピュータを使用して頻出主義の方法を確実に機能させる方法があります。なぜなら、確率は長期的に見られるものであり、それをシミュレートできるからです。ベイジアンは、どの確率が実際にあるのかについてさえ合意することができないようです。それは、ベイジアンスクール(デフォルト、主観など)によって異なります。それが私の質問につながります: 質問:長期的に確率が確率として定義されていない場合、モンテカルロシミュレーション法を使用して、ベイズの方法が不確実性を適切に定義している(つまり、有効な信頼できる区間と事後分布を計算する)ことをどのように確認しますか? 例:データジェネレータを作成します。これは、0.5の確率でベルヌーイ分布からシミュレーションを行うだけです。 set.seed(1839) p <- .50 n <- 100 gen_dat <- function(n, p) { rbinom(n, 1, p) } ここで、ロジスティック回帰の信頼区間が実際に有効であることを確認したいとします。回帰を何度もシミュレートして、実際の母集団の値が95%の時間の95%信頼区間内にあることを確認できます。これは切片のみのモデルなので、p正しく推定していることを確認したいだけです。 set.seed(1839) iter <- 10000 results <- sapply(seq_len(iter), function(zzz) { mod <- glm(gen_dat(n, p) ~ 1, binomial) conf <- suppressMessages(confint(mod)) log(p / (1 - p)) < …

4
ベイジアンの情報のない事前分布と頻度主義の帰無仮説:関係とは?
こちらのブログ投稿でこの画像を見つけました。 この声明を読んでも、この男の場合と同じ顔の表情を引き出せなかったことにがっかりした。 では、帰無仮説は、常連客が情報のない先を表現する方法であるという声明の意味は何ですか?本当ですか? 編集:私は誰かが、少し緩い意味でさえ、声明を真実にする慈善的な解釈を提供できることを望んでいます。

2
参照リクエスト:働くデータサイエンティストのための古典的な統計
私は、回帰、その他の機械学習タイプのアルゴリズム、およびプログラミング(データ分析と一般的なソフトウェア開発の両方)において確かな経験を持つ、データサイエンティストとして働いています。私の仕事のほとんどは、予測精度(さまざまなビジネス上の制約の下での作業)のためのモデルの構築と、自分(および他の人)の仕事をサポートするデータパイプラインの構築に焦点を当てています。 私は統計学の正式な訓練を受けておらず、大学の教育は純粋な数学に焦点を当てています。そのため、古典的なトピックの多く、特に人気のあるさまざまな仮説検定と推論手法の学習に失敗しました。 私の経歴と経験レベルを持つ人に適した、これらのトピックへの参照はありますか?私は数学的な厳密さを扱い(そして理解し)、アルゴリズムの観点も楽しむことができます。私は、数学とプログラミングの両方(またはいずれか)に焦点を当てた、読者ガイド付きの演習を提供するリファレンスを好む傾向があります。

3
MCMCおよびPyMCによる2ガウス混合モデルの推論
問題 単純な2ガウス混合母集団のモデルパラメーターを近似します。ベイジアン手法をめぐる誇大宣伝を踏まえ、この問題についてベイジアン推論が従来のフィッティング手法よりも優れたツールであるかどうかを理解したいと思います。 これまでのところ、MCMCはこのおもちゃの例ではパフォーマンスが非常に低くなっていますが、おそらく見落としているだけかもしれません。コードを見てみましょう。 道具 私はpython(2.7)+ scipyスタック、lmfit 0.8およびPyMC 2.3を使用します。 分析を再現するためのノートはここにあります データを生成する 最初にデータを生成してみましょう: from scipy.stats import distributions # Sample parameters nsamples = 1000 mu1_true = 0.3 mu2_true = 0.55 sig1_true = 0.08 sig2_true = 0.12 a_true = 0.4 # Samples generation np.random.seed(3) # for repeatability s1 = distributions.norm.rvs(mu1_true, sig1_true, size=round(a_true*nsamples)) s2 = …

1
ベイジアン統計がますます人気のある研究トピックになっているのはなぜですか?[閉まっている]
休業。この質問は意見に基づいています。現在、回答を受け付けていません。 この質問を改善してみませんか?この投稿を編集して、事実と引用で回答できるように質問を更新してください。 昨年休業。 トップ100のUSニュース統計プログラムの研究領域を閲覧すると、それらのほとんどすべてがベイジアン統計で重くなっています。しかし、私が下層の学校に通った場合、それらのほとんどはまだ古典的/頻出統計学の研究を行っています。たとえば、私の現在の学校(統計のQSワールドランキングで150から200にランク付けされているため、一流の学校とは見なされていません)には、ベイジアン統計に焦点を当てた教授が1人だけで、ベイジアン統計にはほとんど憤慨があります。私が話をしたいくつかの大学院生は、ベイジアン統計学者がそのためにベイジアン統計を行っているとさえ言っていますが、もちろん私は強く反対します。 しかし、なぜそうなのでしょうか。私はいくつかの教育を受けた推測をしています: (a)クラシック/頻出統計の方法論の進歩のための十分な余地がなく、クラシック/頻出統計の研究で実行可能な唯一の研究は、上位層の学校がより多いはずであるので、下位層の学校の主な焦点となるアプリケーションに関するものです理論的および方法論的研究に傾倒。 (b)フィールドに大きく依存します。統計の特定のブランチは、統計手法の多くの科学的アプリケーションなどのベイジアン統計に適していますが、その他のブランチは、金融分野などの古典的な統計に適しています。(私が間違っている場合は修正してください)これを考えると、一流の学校には科学分野でアプリケーションを実行する統計学部がたくさんあるようですが、下層の学校の統計学部は主に金融分野でアプリケーションに焦点を当てているため、収入を生み出すのに役立ちますそして資金。 (c)たとえば、MLEの過剰適合の傾向があるなど、解決できない頻出主義の方法には大きな問題があります。ベイジアンは素晴らしい解決策を提供しているようです。 (d)計算能力がここにあるので、ベイジアン計算は30年前のようにボトルネックではなくなりました。 (e)これは、私が最も根拠のある推測である可能性があります。古典的統計の役割を潜在的に追い越すことができる方法論の新しい波を好まないだけの、古典的/頻繁な統計学者からの抵抗があります。しかし、ラリー・ワッサーマンが言ったように、それは私たちが何をしようとしているのかに依存し、誰もが、特に研究者として、オープンマインドを保つべきです。

2
確率の頻繁な定義; 正式な定義はありますか?
頻度論者が「確率」の下で理解することの正式な(数学的な)定義はありますか?私はそれが「長期的に」の相対的な発生頻度であると読みましたが、それを定義するための正式な方法はありますか?その定義を見つけることができる既知の参考文献はありますか? 編集: 頻出者(@whuberによるコメントと、その回答の下の@Kodiologistと@Graeme Walshへの私のコメントを参照)とは、この長期的な相対頻度が存在すると「信じる」という意味です。多分これは(部分的に)@Timの質問にも答えます

1
二乗バイアスと分散の加重和を最小化する推定量は、どのようにして決定理論に適合しますか?
わかりました-私の元のメッセージは応答を引き出すことができませんでした。では、別の質問をさせてください。まず、意思決定理論の観点から、私の推定の理解について説明します。私は正式なトレーニングを受けていませんし、私の考えに何らかの欠陥があるとしても、私は驚かないでしょう。 損失関数ます。予想される損失は、(頻繁な)リスクです。L(θ,θ^(x))L(θ,θ^(x))L(\theta,\hat\theta(x)) R(θ,θ^(x))=∫L(θ,θ^(x))L(θ,θ^(x))dx,R(θ,θ^(x))=∫L(θ,θ^(x))L(θ,θ^(x))dx,R(\theta,\hat\theta(x))=\int L(\theta,\hat\theta(x))\mathcal{L}(\theta,\hat\theta(x))dx, ここで、は尤度です。ベイズのリスクは予想される頻出主義のリスクです:L(θ,θ^(x))L(θ,θ^(x))\mathcal{L}(\theta,\hat\theta(x)) r(θ,θ^(x))=∫∫R(θ,θ^(x))π(θ)dxdθ,r(θ,θ^(x))=∫∫R(θ,θ^(x))π(θ)dxdθ,r(\theta,\hat\theta(x))=\int\int R(\theta,\hat\theta(x))\pi (\theta)dxd\theta, ここで、は以前のものです。π(θ)π(θ)\pi (\theta) 一般的に、を最小化するが見つかり、これはすべてうまくいきます。さらに、Fubiniの定理が適用され、を最小化する任意のが他のすべてから独立するように、統合の順序を逆にすることができます。このようにして、尤度の原則に違反することなく、ベイジアンであることなどについて気分を良くすることができます。θ^(x)θ^(x)\hat\theta(x)rrrθ^(x)θ^(x)\hat\theta(x)rrr たとえば、おなじみの二乗誤差損失、頻度リスクは平均二乗誤差または合計です二乗バイアスと分散およびベイズのリスクは、事前に与えられた二乗バイアスと分散の予想合計です。つまり、事後予測損失です。L(θ,θ^(x))=(θ−θ^(x))2,L(θ,θ^(x))=(θ−θ^(x))2,L(\theta,\hat\theta(x))=(\theta- \hat\theta(x))^2, これは今のところ私には理にかなっているようです(かなり間違っている可能性もあります)。しかし、いずれにせよ、他のいくつかの目的については、物事は私にはあまり意味がありません。たとえば、均等に重み付けされた二乗バイアスと分散の合計を最小化する代わりに、等しく重み付けされていない合計を最小化したいとします。つまり、以下を最小化するです。θ^(x)θ^(x)\hat\theta(x) (E[θ^(x)]−θ)2+kE[(θ^(x)−E[θ^(x)])2],(E[θ^(x)]−θ)2+kE[(θ^(x)−E[θ^(x)])2],(\mathbb{E}[\hat\theta(x)]-\theta)^2+k\mathbb{E}[(\hat\theta(x)-\mathbb{E}[\hat\theta(x)])^2], ここで、は正の実定数(1以外)です。kkk 私は通常、このような合計を「目的関数」と呼びますが、その用語を誤って使用している可能性もあります。私の質問は、解決策を見つける方法についてではありません- この目的関数を最小化するを見つけることは数値的に実行可能です-むしろ、私の質問は2つあります:θ^(x)θ^(x)\hat\theta(x) そのような目的関数は、決定理論のパラダイムに適合しますか?そうでない場合、それが適合する別のフレームワークはありますか?はいの場合、どのようにですか?の関数であろう関連する損失関数のように思える、、およびので期待の- -である(これ私は思う)適切ではない。θθ\thetaθ^(x)θ^(x)\hat\theta(x)E[θ^(x)]E[θ^(x)]\mathbb{E}[\hat\theta(x)] このような目的関数は、任意の推定が他のすべての推定に依存するため(仮説であっても、尤度原理に違反します。それにもかかわらず、バイアスの減少とエラー分散の増加のトレードオフが望ましい場合があります。そのような目標が与えられた場合、可能性の原則に準拠するように問題を概念化する方法はありますか?θ^(xj)θ^(xj)\hat\theta(x_{j})θ^(xi≠j)θ^(xi≠j)\hat\theta(x_{i\neq j}) 私は、意思決定理論/推定/最適化に関するいくつかの基本的な概念を理解できなかったと想定しています。答えをお寄せいただき、ありがとうございます。この分野や数学のトレーニングは一般的に受けていないため、何も知らないと想定してください。さらに、(初心者の読者のために)提案された参考文献を歓迎します。

4
Rの離散時間イベント履歴(生存)モデル
Rに離散時間モデルを適合させようとしていますが、その方法がわかりません。 従属変数を時間監視ごとに1つずつ異なる行に編成し、glm関数をlogitまたはcloglogリンクで使用できることを読みました。この意味で、私は3つの列があります:ID、Event(各time-obsで1または0)およびTime Elapsed(観測の開始以降)、および他の共変量。 モデルに合うようにコードを書くにはどうすればよいですか?従属変数はどれですか?Event従属変数として使用できTime Elapsed、共変量に含めることができると思います。しかし、どうなりIDますか?必要ですか? ありがとう。
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

2
ML推定器の不変性プロパティは、ベイジアンの観点から無意味ですか?
CasellaとBergerは、ML推定量の不変性を次のように述べています。 しかし、彼らは「可能性」を完全にアドホックで無意味な方法で定義しているように思えます。ηη\eta 私は、単純なケースwheterに確率論の基本的なルールを適用した場合、私の代わりに、次を得る: L (η | X )= P (X | θ 2 = η )= P (X | θ = - √η=τ(θ)=θ2η=τ(θ)=θ2\eta=\tau(\theta)=\theta^2 今、ベイズの定理を適用すること、およびその後、事実AとBは、我々は和ルール適用できることを相互に排他的でとてもある: P(X|A∨B)=P(xと) P (A ∨ B | X )L(η|x)=p(x|θ2=η)=p(x|θ=−η–√∨θ=η–√)=:p(x|A∨B)L(η|x)=p(x|θ2=η)=p(x|θ=−η∨θ=η)=:p(x|A∨B)L(\eta|x)=p(x|\theta^2=\eta)=p(x|\theta = -\sqrt \eta \lor \theta = \sqrt \eta)=:p(x|A \lor B)AAABBBp(x|A∨B)=p(x)p(A∨B|x)p(A∨B)=p(x|A∨B)=p(x)p(A|x)+p(B|x)p(A)+p(B)p(x|A∨B)=p(x)p(A∨B|x)p(A∨B)=p(x|A∨B)=p(x)p(A|x)+p(B|x)p(A)+p(B)p(x|A\lor B)=p(x)\frac {p(A\lor B|x)}{p(A\lor B)}=p(x|A\lor B)=p(x)\frac {p(A|x)+p(B|x)}{p(A)+p(B)} p(x)p(A)p(x|A)p(x)+p(B)p(x|B)p(x)p(A)+p(B)=p(A)p(x|A)+p(B)p(x|B)p(A)+p(B)p(x)p(A)p(x|A)p(x)+p(B)p(x|B)p(x)p(A)+p(B)=p(A)p(x|A)+p(B)p(x|B)p(A)+p(B)p(x)\frac {p(A)\frac …

6
p値を使用して、仮説が真である確率を計算します。他に何が必要ですか?
質問: p値についてよくある誤解の1つは、帰無仮説が真である確率を表しているということです。私はそれが正しくないことを知っています。また、帰無仮説が真である場合、p値はこれと同じくらい極端なサンプルを見つける確率を表すだけであることを知っています。しかし、直感的には、後者から最初のものを導出できるはずです。誰もこれをしていない理由があるに違いない。p値と関連データから仮説が真である確率を導き出すことを制限する、どのような情報が欠けているのでしょうか? 例: 私たちの仮説は「ビタミンDは気分に影響を与える」です(帰無仮説は「影響なし」です)。1000人で適切な統計調査を行い、気分とビタミンレベルの相関関係を見つけたとします。他のすべてのものが等しい場合、0.01のp値は、0.05のp値よりも真の仮説の可能性が高いことを示します。たとえば、p値が0.05であるとします。仮説が真である実際の確率を計算できないのはなぜですか?どのような情報が不足していますか? 頻度主義統計学者のための代替用語: 私の質問の前提を受け入れるなら、ここを読むのをやめることができます。以下は、仮説が確率解釈を持つ可能性があることを受け入れない人のためのものです。少し用語を忘れましょう。代わりに... 友達と賭けているとしましょう。あなたの友人はあなたに無関係な主題についての千の統計的研究を示します。各スタディでは、p値、サンプルサイズ、およびサンプルの標準偏差のみを確認できます。それぞれの研究について、あなたの友人はあなたに、研究で提示された仮説が真実であると賭ける確率を提供します。賭けをするかしないかを選択できます。1000件すべての研究に賭けをした後、オラクルがあなたに上って、どの仮説が正しいかを教えてくれます。この情報により、賭けを清算することができます。私の主張は、このゲームに最適な戦略があるということです。私の世界観では、これは仮説の確率が真であることを知ることと同じですが、私たちが同意しない場合は問題ありません。その場合、賭けの期待を最大化するためにp値を使用する方法について簡単に話すことができます。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.