タグ付けされた質問 「conditioning」

17
Python用の高品質な非線形プログラミングソルバーはありますか?
解決すべきいくつかの挑戦的な非凸のグローバル最適化問題があります。現在、MATLABのOptimization Toolbox(特にfmincon()algorithm ='sqp'を使用)を使用していますが、これは非常に効果的です。ただし、私のコードのほとんどはPythonで作成されているため、Pythonでも最適化を行いたいと考えています。競合できるPythonバインディングを備えたNLPソルバーはありfmincon()ますか?ちがいない 非線形等式および不等式の制約を処理できる ユーザーがヤコビアンを提供する必要はありません。 グローバルな最適化を保証していなくても構いません(保証fmincon()しません)。私は、困難な問題や、それよりもわずかに遅い場合でも、ローカル最適にロバストに収束するものを探していfmincon()ます。 OpenOptで利用できるソルバーをいくつか試しましたが、MATLABのソルバーより劣っていfmincon/sqpます。 強調するために、私はすでに扱いやすい定式化と優れたソルバーを持っています。私の目標は、ワークフローをより合理化するために、単に言語を変更することです。 Geoffは、問題のいくつかの特性が関連している可能性があると指摘しています。彼らです: 10-400の決定変数 4〜100の多項式等式制約(1〜8の範囲の多項式次数) 決定変数の数の約2倍に等しい合理的な不等式制約の数 目的関数は決定変数の1つです 不等式制約のヤコビアンと同様に、等式制約のヤコビアンは密です。


3
直接的な方法を使用した場合の悪条件の症状は何ですか?
線形システムがあり、そのコンディショニングについて何も知らず、ソリューションに関する予備情報がないとします。盲目的にガウス消去法を適用し、解を取得します。マトリックスの予備的な分析を完全に行わずに、このソリューションが信頼できるかどうか(つまり、システムの条件が整っているかどうか)を判断することは可能ですか?ピボットの大きさは信頼できる情報を提供しますか?バツバツx そして一般的に、「オンザフライ」で悪条件を検出するための主なガイドラインは何ですか?

1
二次微分の中央差分スキームは悪条件につながります
中心差分スキーム: 収率三重対角係数行列[1 -2 1]。ポイントの数が増えると、この行列は悪条件になります。しかし、これは一般的な離散化です。このスキームが悪条件になりがちなときに一般的に使用されるのはなぜですか。d2udx2=un+1−2ui+un−1Δx2d2udx2=un+1−2ui+un−1Δx2\frac{d^2u}{dx^2}=\frac{u_{n+1}-2u_i + u_{n-1}}{\Delta x^2}
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.