2
多重線形回帰シミュレーション
R言語は初めてです。回帰の4つの仮定すべてを満たす多重線形回帰モデルからシミュレーションする方法を知りたい。 わかりました。ありがとう。 このデータセットに基づいてデータをシミュレートしたいとしましょう: y<-c(18.73,14.52,17.43,14.54,13.44,24.39,13.34,22.71,12.68,19.32,30.16,27.09,25.40,26.05,33.49,35.62,26.07,36.78,34.95,43.67) x1<-c(610,950,720,840,980,530,680,540,890,730,670,770,880,1000,760,590,910,650,810,500) x2<-c(1,1,3,2,1,1,3,3,2,2,1,3,3,2,2,2,3,3,1,2) fit<-lm(y~x1+x2) summary(fit) 次に、出力を取得します: Call: lm(formula = y ~ x1 + x2) Residuals: Min 1Q Median 3Q Max -13.2805 -7.5169 -0.9231 7.2556 12.8209 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.85352 11.33229 3.782 0.00149 ** x1 -0.02534 0.01293 -1.960 0.06662 . x2 0.33188 2.41657 …