サンプルの共分散行列が反転可能でない場合はどうすればよいですか?
いくつかのクラスタリング手法に取り組んでいます。d次元ベクトルの特定のクラスターについて、多変量正規分布を仮定し、サンプルのd次元平均ベクトルとサンプルの共分散行列を計算します。 次に、目に見えない新しいd次元ベクトルがこのクラスターに属しているかどうかを判断しようとするときに、次のメジャーを使用してその距離をチェックしています: (Xi−μ^X)′σ^−1X(Xi−μ^X)>B0.95(p2,−p2)(Xi−μ^X)′σ^X−1(Xi−μ^X)>B0.95(p2,−p2)\left(X_i-\hat{\mu}_X\right)'\hat{\sigma}_X^{-1}\left(X_i-\hat{\mu}_X\right)>B_{0.95}\left(\frac{p}{2},\frac{-p}{2}\right) これには、共分散行列の逆行列を計算する必要があります。しかし、いくつかのサンプルを考えると、共分散行列が可逆であることを保証できません。そうでない場合はどうすればよいですか?σ^Xσ^X\hat{\sigma}_X ありがとう