方程式の線形システムは、計算統計に広く使用されています。私が遭遇した1つの特別なシステム(たとえば、因子分析)はシステムです
ここで、 ここでDはであるN × N厳密に正の対角を有する対角行列で、ΩはあるM × M(とM « N対称半正定値行列)であり、Bは任意であり、N × m行列。低ランクの行列によって摂動された対角線形システム(簡単)を解くように求められます。上記の問題を解決する素朴な方法は、Woodburyの式を使用してAを反転させることです
。ただし、コレスキーおよびQR分解は通常、線形システム(および正規方程式)の解を劇的に高速化できるため、これは正しくありません。私は最近次の論文を思いつきました。これはコレスキーのアプローチを採用しているようで、ウッドベリーの反転の数値的不安定性について言及しています。しかし、論文は草案のようで、数値実験や裏付けとなる研究が見つかりませんでした。私が説明した問題を解決するための最新技術は何ですか?
1
両方のケースで。)すべての逆行列は対角行列であり、したがって自明であることに注意してください。
—
枢機卿、