2
Wilksの1938年の証明が、誤って指定されたモデルに対して機能しないのはなぜですか?
有名な1938年の論文(「複合仮説をテストするための尤度比の大標本分布」、Annals of Mathematical Statistics、9:60-62)で、サミュエルウィルクスは(対数尤度比)の漸近分布を導きました)ネストされた仮説の場合、より大きな仮説が正しく指定されているという仮定の下で。極限分布はχ 2(カイ二乗)とH - M個の自由度Hが大きい仮説とのパラメータの数であり、Mが2×LLR2×LLR2 \times LLRχ2χ2\chi^2h−mh−mh-mhhhmmmネストされた仮説の自由パラメーターの数です。ただし、仮説が誤って指定されている場合(つまり、大きな仮説がサンプリングされたデータの真の分布ではない場合)、この結果が保持されないことはよく知られています。 誰でもその理由を説明できますか?ウィルクスの証明は、わずかな修正を加えても機能するはずです。最尤推定(MLE)の漸近正規性に依存しますが、これは誤って指定されたモデルでも保持されます。唯一の違いは、制限多変量正規分布の共分散行列です。正しく指定されたモデルでは、共分散行列を逆フィッシャー情報行列で近似できますが、仕様が間違っていれば、共分散行列のサンドイッチ推定(J − 1 K J − 1)。モデルが正しく指定されると、後者はフィッシャー情報行列の逆行列になります(J = KJ−1J−1J^{-1}J−1KJ−1J−1KJ−1J^{-1} K J^{-1}J=KJ=KJ = K)。AFAICT、Wilksの証明は、MLEの多変量正規の可逆漸近共分散行列(Wilks論文の)がある限り、共分散行列の推定値がどこから来るかを気にしません。 c−1c−1c^{-1}