置換テストには前提がないとよく言われますが、これは確かに真実ではありません。たとえば、サンプルが何らかの形で相関している場合、ラベルを並べ替えることは正しいことではないと想像できます。この問題について私が見つけたと思うのは、ウィキペディアの次の文章です。「置換テストの背後にある重要な仮定は、帰無仮説の下で観測値が交換可能であるということです。」私には分かりません。
順列検定の前提は何ですか?そして、これらの仮定は、考えられるさまざまな置換スキームにどのように関連していますか?
置換テストには前提がないとよく言われますが、これは確かに真実ではありません。たとえば、サンプルが何らかの形で相関している場合、ラベルを並べ替えることは正しいことではないと想像できます。この問題について私が見つけたと思うのは、ウィキペディアの次の文章です。「置換テストの背後にある重要な仮定は、帰無仮説の下で観測値が交換可能であるということです。」私には分かりません。
順列検定の前提は何ですか?そして、これらの仮定は、考えられるさまざまな置換スキームにどのように関連していますか?
回答:
文献は、2種類の順列検定を区別しています。(2)順列検定はまったく同じ検定ですが、交換可能性を正当化するために他の仮定(ランダム割り当て以外)が必要な状況に適用されます。
命名規則に関するいくつかの参考文献(すなわち、ランダム化と順列):Kempthorne&Doerfler、Biometrika、1969; Edgington&Onghena、Randomization Tests、第4版、2007年
仮定については、ランダム化検定(実験データに対するフィッシャーのランダム化検定)には、ドナルドルービンが参照する安定ユニット処理値仮定(SUTVA)のみが必要です。JASAのBasuの論文に関するRubinの1980年のコメントを参照してください。SUTVAは、Neyman-Rubinの潜在的な結果モデル(Paul Hollandの1986 JASA論文を参照)の下での因果推論の基本的な仮定の1つです(強い無視可能性とともに)。基本的に、SUTVAは、ユニット間に干渉はなく、治療条件はすべての受信者で同じであると言います。より正式には、SUTVAは潜在的な結果と割り当てメカニズムの間の独立性を前提としています。
参加者がランダムにコントロールグループまたは治療グループに割り当てられている2サンプルの問題を考えます。たとえば、2人の研究参加者が知り合いであり、1人の割り当て状況が他の参加者の結果に何らかの影響を及ぼした場合、SUTVAに違反します。これは、ユニット間の干渉がないことを意味します。
上記の説明は、参加者がグループにランダムに割り当てられたランダム化テストに適用されます。順列テストのコンテキストでは、SUTVAも必要ですが、何もなかったためにランダム化に依存しない場合があります。
ランダムな割り当てがない場合、置換テストの有効性は、交換可能性を満たすために、同一形状の分布または対称分布(テストに依存)などの分布仮定に依存する場合があります(Box and Anderson、JRSSB、1955を参照)。
興味深い論文で、Hayes、Psych Methods、1996は、シミュレーションによって、ランダム化されていないデータで置換テストが使用された場合、タイプIのエラー率がどのように膨らむかを示しています。
「定量化データ分析および順列テストの入門」(88ページ)を参照してください。