3
ARMA(2,1)プロセスの自己共分散-解析モデルの導出
次のように示されるARMA(2,1)プロセスの自己共分散関数の分析式を導出する必要があります。γ(k)γ(k)\gamma\left(k\right) yt=ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵtyt=ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵty_t=\phi_1y_{t-1}+\phi_2y_{t-2}+\theta_1\epsilon_{t-1}+\epsilon_t だから、私はそれを知っています: γ(k)=E[yt,yt−k]γ(k)=E[yt,yt−k]\gamma\left(k\right) = \mathrm{E}\left[y_t,y_{t-k}\right] だから私は書くことができます: γ(k)=ϕ1E[yt−1yt−k]+ϕ2E[yt−2yt−k]+θ1E[ϵt−1yt−k]+E[ϵtyt−k]γ(k)=ϕ1E[yt−1yt−k]+ϕ2E[yt−2yt−k]+θ1E[ϵt−1yt−k]+E[ϵtyt−k]\gamma\left(k\right) = \phi_1 \mathrm{E}\left[y_{t-1}y_{t-k}\right]+\phi_2 \mathrm{E}\left[y_{t-2}y_{t-k}\right]+\theta_1 \mathrm{E}\left[\epsilon_{t-1}y_{t-k}\right]+\mathrm{E}\left[\epsilon_{t}y_{t-k}\right] 次に、自己共分散関数の分析バージョンを導出するには、ある整数より大きいすべてのに対して有効な再帰が得られるまで、 -0、1、2 ...の値を代入する必要があります。kkkkkkk したがって、を代入し、これを実行して以下を取得します。k=0k=0k=0 γ(0)=E[yt,yt]=ϕ1E[yt−1yt]+ϕ2E[yt−2yt]+θ1E[ϵt−1yt]+E[ϵtyt]γ(0)=E[yt,yt]=ϕ1E[yt−1yt]+ϕ2E[yt−2yt]+θ1E[ϵt−1yt]+E[ϵtyt] \gamma \left(0\right) = \mathrm{E}\left[y_t,y_t\right] = \phi_1 \mathrm{E}\left[y_{t-1}y_t\right] + \phi_2 \mathrm{E}\left[y_{t-2}y_t\right]+\theta_1 \mathrm{E}\left[\epsilon_{t-1}y_t\right]+\mathrm{E}\left[\epsilon_ty_t\right]\\ これで、これらの用語の最初の2つを単純化して、前と同じように置き換えることができます。ytyty_t γ(0)=ϕ1γ(1)+ϕ2γ(2)+θ1E[ϵt−1(ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵt)]+E[ϵt(ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵt)]γ(0)=ϕ1γ(1)+ϕ2γ(2)+θ1E[ϵt−1(ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵt)]+E[ϵt(ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵt)] \gamma\left(0\right) = \phi_1 \gamma\left(1\right) + \phi_2 \gamma\left(2\right)\\ + \theta_1 \mathrm{E}\left[\epsilon_{t-1} \left(\phi_1 y_{t-1} +\phi_2 y_{t-2} +\theta_1 \epsilon_{t-1} + \epsilon_t \right)\right]\\ …