5
混合モデルで因子をランダムとして扱うことの利点は何ですか?
いくつかの理由で、モデルファクターをランダムとしてラベル付けすることの利点を受け入れるのに問題があります。私には、ほとんどすべての場合、最適な解決策はすべての要因を固定として扱うことのように見えます。 まず、固定とランダムの区別は非常にarbitrary意的です。標準的な説明では、特定の実験ユニット自体に興味がある場合は固定効果を使用し、実験ユニットによって表される母集団に興味がある場合はランダム効果を使用する必要があります。これは、データと実験デザインが同じままであっても、固定ビューとランダムビューを交互に切り替えられることを意味するため、あまり役に立ちません。また、この定義は、因子がランダムとしてラベル付けされている場合、モデルから引き出された推論は、因子が固定としてラベル付けされている場合よりも母集団により何らかの形で適用できるという幻想を促進します。最後に、ゲルマンは、固定ランダムな区別が混乱していることを示しています 定義レベルでも、固定効果とランダム効果の定義がさらに4つあるためです。 第二に、混合モデルの推定は非常に複雑です。「完全に固定された」モデルとは対照的に、p値を取得する方法はいくつかあります。 。 第三に、ランダムな要因によっていくつの暗黙的なパラメータが導入されるかという不透明な問題があります。次の例は、Burnham&Andersonのモデル選択とマルチモデル推論:実用的な情報理論的アプローチでの私の適応です。バイアスと分散のトレードオフの観点から、ランダム効果の役割は次のように説明できます。処理と主因子効果を持つ一元配置分散分析を検討してくださいは推定可能です。エラー項には分布があります。観測値の数が固定されている場合、バイアス分散のトレードオフは、が上がるにつれて低下します。我々はと言うと仮定K K - 1 N(0 、σ 2)K KKKKKKKK− 1K−1K - 1N(0 、σ2)N(0、σ2)\mathcal N(0, \sigma^2)KKKKKK主効果は分布から引き出されます。対応するモデルは、固定(オーバーフィット)バージョンとインターセプトのみを含むアンダーフィットモデルの中間の複雑さを持ちます。固定モデルの有効なパラメーターの数はN(0 、σK)N(0、σK)\mathcal N(0, \sigma_K) 1i n t e r c e p t +(K− 1 )mはI nはe ffe c t s +1σ= K+ 1。1私ntercept+(K−1)ma私neffects+1σ=K+1。1 \:\:\mathrm{intercept} + (K - 1) \:\:\mathrm{main\: effects} + …