Galit Shmueliの「説明するか予測するか」(2010年)を読んで、私は明らかな矛盾に困惑しています。3つの施設がありますが、
- AICベースとBICベースのモデル選択(p。300の終わり-p。301の始まり):簡単に言えば、AICは予測を目的としたモデルの選択に使用し、BICは説明用のモデルの選択に使用する必要があります。さらに(上記の論文ではありません)、いくつかの条件下では、BIC は候補モデルのセットの中から真のモデルを選択することを知っています。真のモデルは、説明的モデリングで求めているものです(p。293の終わり)。
- 単純な算術:AICは、サイズ8以上のサンプルに対してBICよりも大きなモデルを選択します AICとBICの複雑さのペナルティが異なるため、を満たし)。
- 「真」のモデル(すなわち、正しい説明変数と正しい機能的な形でモデルが、不完全推定された係数)は、予測のために最良のモデル(P 307)ではないかもしれない:行方不明の予測と回帰モデルは、より良い予測モデルもあり-予測子の欠落によるバイアスの導入は、推定の不正確さによる分散の減少によって相殺される場合があります。
ポイント1と2は、より節約的なモデルよりも大きなモデルの方が予測に適している可能性があることを示唆しています。一方、ポイント3は、より控えめなモデルのほうが大きなモデルよりも予測に適しているという反対の例を示しています。これは不可解です。
質問:
- ポイント間の明らかな矛盾{1。および2.}および3.説明/解決されますか?
- ポイント3に照らして、AICによって選択されたより大きなモデルが、BICによって選択されたよりpar約的なモデルよりも実際に予測に優れている理由と方法について直感的に説明できますか?