ノイズのスペクトル減算を改善するための推定器
クリーンな信号に依存しない、真のゼロ平均ガウスホワイトノイズ xxx 既知の分散が追加されます xxx ノイズの多い信号を生成する y.y.y. 離散フーリエ変換(DFT) YYY ノイズの多い信号の次のように計算されます。 Yk=1N∑n=0N−1e−i2πkn/Nyn.(1)(1)Yk=1N∑n=0N−1e−i2πkn/Nyn.Y_k = \frac{1}{N}\sum_{n=0}^{N-1}e^{-i2\pi kn/N}y_n.\tag{1} これは単なるコンテキストであり、周波数領域でノイズ分散を定義するため、正規化(またはその欠如)は重要ではありません。時間領域のガウスホワイトノイズは、周波数領域のガウスホワイトノイズです。質問:「ホワイトガウスノイズの離散フーリエ変換の統計とは何ですか?」を参照してください。したがって、次のように書くことができます。 Yk=Xk+Zk,Yk=Xk+Zk,Y_k = X_k + Z_k, どこ XXX そして ZZZ クリーンな信号とノイズのDFTであり、 ZkZkZ_k 分散の円対称複素ガウス分布に従うノイズビン σ2σ2\sigma^2。それぞれの実数部と虚数部ZkZkZ_k ガウス分散の分散を個別に追跡する 12σ212σ2\frac{1}{2}\sigma^2。ビンの信号対雑音比(SNR)を定義しますYkYkY_k なので: SNR=σ2|Xk|2.SNR=σ2|Xk|2.\mathrm{SNR} = \frac{\sigma^2}{|X_k|^2}. 次に、スペクトル減算によってノイズを低減する試みが行われます。これにより、各ビンの大きさが YkYkY_k元の位相を保持しながら、独立して減少します(大きさの減少でビン値がゼロにならない限り)。削減は見積もりを形成します|Xk|2ˆ|Xk|2^\widehat{|X_k|^2} 広場の |Xk|2|Xk|2|X_k|^2 クリーン信号のDFTの各ビンの絶対値: |Xk|2ˆ=|Yk|2−σ2,(2)(2)|Xk|2^=|Yk|2−σ2,\widehat{|X_k|^2} = |Y_k|^2 - \sigma^2,\tag{2} どこ σ2σ2\sigma^2各DFTビンにおける既知のノイズの分散です。簡単にするために、私たちは考慮していませんk=0,k=0,k = 0, または k=N/2k=N/2k = …