2
離散ウェーブレット変換-分解された詳細係数と信号間の関係の可視化
離散ウェーブレット変換(DWT)詳細係数と元の信号/その再構成との関係を直接視覚化しようとしています。目標は、それらの関係を直感的な方法で示すことです。質問したい(下記の質問を参照):私が思いついたアイデアとプロセスがこれまでに正しいかどうか、そして関係を視覚化する前に元の信号から第1レベルの近似値を差し引くほうがよいと私が正しい場合。 最小限の例 これは、1024の値を持つPythonのECGサンプルデータを単純な1D信号として使用して、私が説明の基にした最小限の例です。pywavelets import pywt import pywt.data import numpy as np import matplotlib.pyplot as plt x = pywt.data.ecg() plt.plot(x) plt.legend(['Original signal']) 分解は、合計6レベルのSymmlet 5を使用して行われます。 w = pywt.Wavelet('sym5') plt.plot(w.dec_lo) coeffs = pywt.wavedec(x, w, level=6) (不可逆)信号の再構成は、意図的に高レベルの詳細係数を除外したときに期待どおりに機能します(信号は、便宜上、均一なxスケール[0,1]にプロットされています)。 def reconstruction_plot(yyy, **kwargs): """Plot signal vector on x [0,1] independently of amount of values it contains.""" plt.plot(np.linspace(0, …