17
Python用の高品質な非線形プログラミングソルバーはありますか?
解決すべきいくつかの挑戦的な非凸のグローバル最適化問題があります。現在、MATLABのOptimization Toolbox(特にfmincon()algorithm ='sqp'を使用)を使用していますが、これは非常に効果的です。ただし、私のコードのほとんどはPythonで作成されているため、Pythonでも最適化を行いたいと考えています。競合できるPythonバインディングを備えたNLPソルバーはありfmincon()ますか?ちがいない 非線形等式および不等式の制約を処理できる ユーザーがヤコビアンを提供する必要はありません。 グローバルな最適化を保証していなくても構いません(保証fmincon()しません)。私は、困難な問題や、それよりもわずかに遅い場合でも、ローカル最適にロバストに収束するものを探していfmincon()ます。 OpenOptで利用できるソルバーをいくつか試しましたが、MATLABのソルバーより劣っていfmincon/sqpます。 強調するために、私はすでに扱いやすい定式化と優れたソルバーを持っています。私の目標は、ワークフローをより合理化するために、単に言語を変更することです。 Geoffは、問題のいくつかの特性が関連している可能性があると指摘しています。彼らです: 10-400の決定変数 4〜100の多項式等式制約(1〜8の範囲の多項式次数) 決定変数の数の約2倍に等しい合理的な不等式制約の数 目的関数は決定変数の1つです 不等式制約のヤコビアンと同様に、等式制約のヤコビアンは密です。
77
python
optimization
nonlinear-programming
linear-algebra
linear-solver
sparse-matrix
ode
automatic-differentiation
efficiency
matrix
symbolic-computation
pde
multiphysics
operator-splitting
fluid-dynamics
pde
multigrid
pde
hyperbolic-pde
quadrature
precision
numerical-analysis
fluid-dynamics
interpolation
c
ode
testing
data-sets
pde
fluid-dynamics
hyperbolic-pde
pde
finite-element
fluid-dynamics
stability
incompressible
pde
hyperbolic-pde
fluid-dynamics
pde
precision
floating-point
convex-optimization
conditioning
pde
hyperbolic-pde
stability
implicit-methods
explicit-methods
fluid-dynamics
accuracy
pde
hyperbolic-pde
petsc
linear-algebra