2
テキストの分類:異なる種類の機能の組み合わせ
私が取り組んでいる問題は、短いテキストを複数のクラスに分類することです。私の現在のアプローチは、tf-idf加重項頻度を使用し、単純な線形分類器(ロジスティック回帰)を学習することです。これはかなりうまく機能します(テストセットで約90%のマクロF-1、トレーニングセットで約100%)。大きな問題は、目に見えない単語/ n-gramです。 私は、他の機能、たとえば分布類似性(word2vecで計算)を使用して計算された固定サイズのベクトル、または例の他のカテゴリ機能を追加して、分類器を改善しようとしています。私の考えは、単語の袋からスパース入力フィーチャにフィーチャを追加するだけでした。ただし、これにより、テストおよびトレーニングセットのパフォーマンスが低下します。追加の機能自体は、テストセットで約80%のF-1を提供するため、不要ではありません。機能のスケーリングも役に立たなかった。私の現在の考えでは、この種の機能は(スパース)ワードオブワード機能とうまく混同されません。 質問は次のとおりです。追加機能が追加情報を提供すると仮定して、それらを組み込む最良の方法は何ですか?別々の分類子をトレーニングし、それらをある種のアンサンブル作業で組み合わせることができますか(これには、おそらく、異なる分類子の機能間の相互作用をキャプチャできないという欠点があります)。他に考慮すべき複雑なモデルはありますか?