平面内の互いに素な複数の単純なポリゴンと、すべてのポリゴンの外側にある2つのポイントとtが与えられていると仮定します。ユークリッド最短経路問題は、ポリゴンの内部と交差しないsからtまでのユークリッド最短経路を計算することです。具体的には、sとtの座標がの座標、およびすべてのポリゴン頂点の座標が整数であるます。
この問題は多項式時間で解決できますか?
もちろん、ほとんどの計算幾何学者はすぐに「はい」と言います:John HershbergerとSubhash Suriは、時間でユークリッドの最短経路を計算するアルゴリズムを説明しました。この時間制限は代数計算ツリーモデルで最適です。残念ながら、HershbergerとSuriのアルゴリズム(およびその前後のほぼすべての関連アルゴリズム)は、次の強力な意味での正確な実算を必要とするようです。
すべての内部頂点が障害物頂点である場合、有効な多角形パスを呼び出します。すべてのユークリッド最短経路が有効です。有効なパスの長さは、整数の平方根の合計です。したがって、2つの有効なパスの長さを比較するには、2つの平方根の合計を比較する必要があります。ます。これは、多項式時間で行う方法がわかりません。
さらに、平方根の総和問題の任意のインスタンスが、同等のユークリッド最短経路問題に還元できることは完全に妥当であると思われます。
だから:ユークリッド最短経路を計算する多項式時間アルゴリズムはありますか?それとも問題はNP困難ですか?または sum-of-square-roots-hard?または、他の何か?
いくつかのメモ:
O (n )で1つのポリゴンの内部(または外部)の最短経路を計算できます少なくともポリゴンの三角形分割が指定されている場合、は、標準ファンネルアルゴリズムを使用して、奇妙な数値の問題なし時間。
実際には、浮動小数点演算は、浮動小数点精度までの最短パスを計算するのに十分です。正確な問題の複雑さにのみ興味があります。
ジョン・キャニーとジョン・レイフは、3空間での対応する問題がNP困難であることを証明しました(道徳的に最短パスが指数関数的に存在する可能性があるため)。 Joonsoo Choi、JürgenSellen、およびChee-Keng Yapは、多項式時間近似スキームについて説明しました。
Simon KahanとJack Snoeyinkは、単純なポリゴンの最小リンクパスの関連する問題について、同様の問題を検討しました。