Courcelleの定理は、モナド2次論理で定義可能なすべてのグラフプロパティは、有界treewidthのグラフ上で線形時間で決定できると述べています。これは、最もよく知られているアルゴリズムメタ定理の1つです。
クルセルの定理に動機付けられて、私は次のような推測をしました。
推測: MSO定義可能なプロパティとする。場合ψは、平面グラフに多項式時間で解けるあり、その後、ψはマイナー-freeグラフのすべてのクラスに多項式時間で解けるです。
上記の推測が明らかに間違っているかどうか、つまり、平面グラフでは多項式時間で解けるが、あるクラスのマイナーフリーグラフではNP困難なMSO定義可能なプロパティがあるかどうかを知りたいですか?
これが私の以前の質問の背後にある動機です:属gのグラフでは多項式的に解けるが、属> gのグラフではNP困難な問題はありますか?