PCAは自己相関データをどのように処理していますか?
一部の特派員が自己相関の計算方法に関して興味深い質問をしたからといって、時系列と自己相関についての知識がほとんどないまま、私はそれを試してみました。 特派員は彼のデータ(時系列のデータポイント)をそれぞれ1タイムラグずらして配置したため、最初の行は元のデータ、2行目はデータ(私が理解しているように)の行列になりますデータは時間単位ずつシフトされ、次の行は別の行単位にシフトされます。これを最後に尾に接着し、「円形」のデータセットを作成することでさらに実現しました。32323232×3232×3232\times32111 次に、そこから何が得られるかを調べるために、相関行列を計算し、これから主成分を計算しました。驚いたことに、私は周波数分解のイメージを取得し、(他のデータについても)1つの周波数、つまり、データの1周期が最初の主成分であり、4周期が2番目のPCであるというように続きました。 (固有値の「関連」PC を取得しました323232666>1>1>1)。最初、これは入力データに依存すると思っていましたが、循環シフト(「テプリッツ」行列とも呼ばれます)を使用したデータセットの特別な構成により、体系的にこのようになっていると思います。PCソリューションのバリマックスまたは他の回転基準への回転は、わずかに異なり、おそらく興味深い結果をもたらしましたが、一般に、そのような周波数分解を提供するようです。 以下は、ポイントのデータセットから作成した画像へのリンクです。曲線は、因子行列の負荷から単純に作成されます。1つの曲線は、1つの因子の負荷です。最初のPC1の曲線は、最大の振幅を示しているはずです(おおよそ、loadingsquareの合計が最大であるため)323232 質問: Q1:これは仕様による機能ですか?(このタイプのデータセットを持つPCAの) Q2:このアプローチは、周波数/波長分析への真剣なアプローチに実際に何らかの形で使用できますか? [更新]ここはデータセットです(コピーできるようになっていることを願っています) -5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4 -3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5 -1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3 0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1 2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0 4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2 6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4 5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6 3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5 1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3 1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1 0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1 -2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0 -3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2 -1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3 0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1 3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0 5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3 7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5 6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7 7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6 5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7 4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5 3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4 2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3 3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2 5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3 4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5 3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4 2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3 3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2 4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3