2
アンケートの信頼性の評価:次元、問題のある項目、およびalpha、lambda6またはその他のインデックスを使用するかどうか?
実験に参加している参加者のスコアを分析しています。製品に対する参加者の態度を推定することを目的とした6つの項目で構成されるアンケートの信頼性を推定したいと思います。 Cronbachのアルファを計算し、すべてのアイテムを単一のスケールとして扱い(アルファは約0.6)、一度に1つのアイテムを削除しました(最大アルファは約0.72)。アイテムの数と基礎となる構造の次元によっては、アルファが過小評価および過大評価される可能性があることを知っています。それで、PCAも行いました。この分析により、分散の約80%を説明する3つの主成分があることが明らかになりました。だから、私の質問は、今どのように進めることができるかについてのすべてですか? これらの各次元でアルファ計算を実行する必要がありますか? 信頼性に影響するアイテムを削除しましたか? さらに、Webで検索すると、信頼性の別の尺度があることがわかりました。guttmanのlambda6です。 このメジャーとアルファの主な違いは何ですか? ラムダの良い値は何ですか?