心理学の研究のように、理論的には少数のスケールで構成されている一連のアンケート項目のスコアを含むデータセットがあるとします。
ここでの一般的なアプローチは、クロンバッハのアルファなどを使用してスケールの信頼性を確認し、スケールの項目を集計してスケールスコアを形成し、そこから分析を続けることです。
しかし、因子分析もあります。これは、すべてのアイテムスコアを入力として受け取り、それらが一貫した因子を形成していることを通知します。負荷や共同性などを調べることにより、これらの要素がどの程度強力であるかを知ることができます。私にはこれは同じようなもののように聞こえますが、はるかに詳細です。
スケールの信頼性がすべて優れていても、EFAはどのアイテムがどのスケールに適しているかを修正することがありますよね?あなたはおそらくクロスローディングを取得するでしょうし、単純なスケール合計よりも派生因子スコアを使用する方が理にかなっているかもしれません。
これらのスケールを後の分析(回帰やANOVAなど)に使用する場合、信頼性が維持される限り、スケールを集計する必要がありますか?または、CFAのようなものです(スケールが適切な要素として保持されるかどうかをテストするテスト。これは、「信頼性」と同じものを測定しているようです)。
私は両方のアプローチを個別に教えられてきたので、それらがどのように一緒に使用できるか、どちらがどのコンテキストに適しているかなど、それらがどのように関連しているかは本当にわかりません。この場合、優れた研究実践のための決定木はありますか?何かのようなもの:
予測されたスケールアイテムに従ってCFAを実行する
- CFAが適切な適合を示している場合は、因子スコアを計算し、それらを分析に使用します。
- CFAの適合性が低い場合は、代わりにEFAを実行し、探索的アプローチ(または何か)を実行します。
因子分析と信頼性テストは、実際には同じことへの別のアプローチですか、それとも私はどこかで誤解していますか?