3
線形回帰の誤差の分散共分散行列
実際には、var / covエラーマトリックスは統計分析パッケージによってどのように計算されますか? この考えは理論的には私には明らかです。しかし実際にはそうではありません。つまり、確率変数のベクトルがある場合、分散/共分散行列平均からの逸脱ベクトルの外積が与えられます:。 ΣX=(X1,X2,…,Xn)⊤X=(X1,X2,…,Xn)⊤\textbf{X}=(X_{1}, X_{2}, \ldots, X_{n})^\topΣΣ\SigmaΣ=E[(X−E(X))(X−E(X))⊤]Σ=E[(X−E(X))(X−E(X))⊤]\Sigma=\mathrm{E}\left[(\textbf{X}-\mathrm{E}(\textbf{X}))(\textbf{X}-\mathrm{E}(\textbf{X}))^\top\right] しかし、サンプルがある場合、私の観測の誤差は確率変数ではありません。またはそれ以上ですが、同じ母集団から多数の同一のサンプルを取得した場合のみです。そうでなければ、それらは与えられます。だから、再び私の質問は:統計パッケージはどのようにして研究者によって提供された観測(つまりサンプル)のリストから始まるvar / cov行列を生成できるのでしょうか?