相互検証のどの方法が最適であるかをどのように知ることができますか?
私は自分の状況に最適な相互検証方法を見つけようとしています。 次のデータは、問題を処理するための単なる例です(Rで)が、実際のXデータ(xmat)は相互に関連付けられ、y変数(ymat)でさまざまな程度に関連付けられています。Rコードを提供しましたが、私の質問はRについてではなく、メソッドについてです。XmatX変数V1〜V100がymat含まれ、単一のy変数が含まれます。 set.seed(1233) xmat <- matrix(sample(-1:1, 20000, replace = TRUE), ncol = 100) colnames(xmat) <- paste("V", 1:100, sep ="") rownames(xmat) <- paste("S", 1:200, sep ="") # the real y data are correlated with xmat ymat <- matrix(rnorm(200, 70,20), ncol = 1) rownames(ymat) <- paste("S", 1:200, sep="") のyすべての変数に基づいて予測するためのモデルを構築したいと思いますxmat。したがって、線形回帰モデルになりy ~ V1 + …