グラフでは、独立したセットは、誘導サブグラフとしてエッジを含まない頂点サブセットです。グラフ内で最大の独立集合を見つける問題は、基本的なアルゴリズムの問題であり、難しい問題です。グラフ内で最大のHフリーセット(サイズ)を見つけるというより一般的な質問を考えてみましょう。Hフリーとは、固定グラフHのコピーを含むサブグラフを誘導サブグラフとして誘導しないことを意味します。
入力グラフGが与えられた固定グラフHの場合、Gの最大のHフリーセットのサイズを決定するのはNP困難ですか?
グラフH(またはHのクラス)の「テーブル」を構築して、上記の質問に対する正しい「はい」または「いいえ」の回答をエントリに記入する賢明な方法はありますか?(「no」= Pのふりをし、「no」エントリであっても、最大のHフリーセットを生成するポリタイムアルゴリズムがあることを意味します。)
それに失敗すると、答えがイエスであるHの非自明なクラスがありますか?... 番号?
私は、一般化された/ Hフリーの有彩色数に関する2つのクエリを調べてみました--- こことここ ---独立数のHフリーの類似体の(一見単純な)「二重」問題また開いているかもしれません。ランダムグラフの関連問題に関する古典的な論文を知っています。例えば、Erdos、Suen and Winkler(1995)またはBollobas and Thomason(2000)は、まだ非常に活発な研究ラインにあります。したがって、この基本的な質問に対処するために私がまだ見たことがなく、おおまかなインターネット検索で明らかにされなかった作業がすでにあるかもしれません(したがって、reference-requestタグ)。