(強力な)固定パラメーターの扱いやすさの定義では、時間範囲はの形式の式ですここで、入力インスタンスはパラメーターで、は多項式、およびは計算可能な関数です。(x 、k )k p f
削減の概念が同様に制限されている限り、の計算可能性要件を他のクラスの関数に置き換えることができます。(たとえば、FlumとGroheは、教科書の第15章から第16章で指数関数的および準指数関数的なファミリーをカバーし、関連するerfおよびserfの削減を行います。)
誰もがパラメータ限界基本関数のファミリーを研究しましたか?
初等関数は、指数関数の固定された塔することにより、上記境界することができるので、このクラスは、合成の下で閉じています。還元におけるパラメーターの増加は、同様に初等関数によって上に制限されなければなりません。
固定パラメータで扱いやすいオートマトン理論には興味深い問題がありますが、パラメータの範囲は非素です(P = NPでない限り、Frick and Groheを参照、doi:10.1016 / j.apal.2004.01.007)。このような「銀河」定数につながるパラメーターの固定値を除外する固定パラメーターの扱いやすい問題を誰かが見ていたのではないかと思います(リチャードリプトンとケンリーガンの用語を使用)。乱暴に推測すると、そのような制限は、Courcelleの定理をフラグメントに適用することから生じる可能性のある非素定数に至らないモナド2次論理のフラグメントによって特徴付けられるなど、有限モデル理論との有用な関連性があります無制限の数量詞の交替。