組み合わせ表現理論と代数幾何学には、正の公式が知られていない多くの問題があります。私が考えているいくつかの例がありますが、私の例としてクロネッカー係数の計算を取り上げます。通常、「正の式」の概念は組み合わせ論では正確に定義されていませんが、「合理的に明示的なセットのカーディナリティーとしての記述」を大まかに意味します。最近、私はJonah Blasiakと話をしていますが、彼は「正の式」の正しい定義は#Pであると私に納得させています。このサイトでは、#Pを定義する必要はないと想定します。
BuergisserとIkenmeyerは、クロネッカー係数が#Pハードであることを示しています。(それらはテンソル積の多重度であるため、常にポジティブです。)しかし、それらを計算する方法を誰も知らないので、それらを#Pに入れることさえ合理的に確信しています。
したがって、クロネッカー係数が#Pにないことを実際に証明しようとするとします。私がやることは、複雑な理論的推測を仮定し、Kronecker積を#Pより大きいクラスで完全であることが知られている他の問題に還元することだと思います。
どのような推測を想定し、どのような問題を軽減しようとしますか?
追加:コメントで指摘されているように、BuergisserとIkenmeyerは、クロネッカー係数が#Pにかなり近いGap-Pにあることを示しています。だから、私が尋ねるべき質問は次のように聞こえます:(1)もっともらしいG-P-complete問題は何ですか?(2)Gap-Pが#Pではないことを示す見込みは何ですか?私は(2)は2つの部分に分かれるべきだと思います(2a)専門家はこれらのクラスが異なると信じていますか?(2b)それを証明する可能性のある戦略はありますか?
質問のこのような編集が眉をひそめないことを願っています。