グラフプロパティは、頂点の削除に関して閉じられている場合、遺伝的と呼ばれます(つまり、すべての誘導されたサブグラフがプロパティを継承します)。グラフのプロパティは、互いに素なユニオンの取得に関して閉じている場合、加算的と呼ばれます。
遺伝性のプロパティを見つけることは難しくありませんが、相加的ではありません。2つの簡単な例:
(1)グラフが完成しました。
(2)グラフには2つの頂点独立サイクルが含まれていません。
これらの場合、プロパティが誘導されたサブグラフに継承されることは明らかですが、プロパティを持つ2つの互いに素なグラフを取ると、それらの結合はそれを保持しない場合があります。
上記の例は両方とも、ポリタイムで決定可能なプロパティです(ただし、(2)の場合はやや簡単です)。より難しいプロパティが必要な場合は、(2)のパターンに従って作成することもできますが、サイクルをより複雑なグラフタイプに置き換えます。ただし、N P ≠ c o N Pなどの標準的な複雑さの仮定の下では、問題がさえ残っていない状況に簡単に陥ることがあります。N P内に留まる例を見つけることはささいなことではないように見えますが、それでも困難です。
質問:遺伝的であるが加算的ではない(できれば自然な)完全なグラフプロパティを知って いますか?