バックグラウンド
実数の計算は自然数の計算よりも複雑です。実数は無限のオブジェクトであり、実数は数え切れないほど多くあるため、実数は有限アルファベット上の有限文字列で忠実に表現できないからです。
ラムダ計算、チューリングマシン、再帰関数などのさまざまな計算モデルが同等であることが判明している有限文字列上の古典的な計算可能性とは異なり(少なくとも文字列上の関数の計算可能性について)、さまざまな計算モデルが提案されています互換性のない実数。たとえば、古典的なチューリングマシンモデルに最も近いTTEモデル([Wei00]も参照)では、実数は無限入力テープ(チューリングのオラクルのような)を使用して表され、比較を決定することはできません。与えられた2つの実数の間の等式関係(有限時間)。一方、RAMマシンモデルに類似したBBS / real-RAMモデルでは、任意の実数を格納できる変数があり、比較と等式はモデルのアトミック操作の1つです。このような理由から、多くの専門家は、BSS / real-RAMモデルは現実的ではなく(少なくとも現在のデジタルコンピューターでは実装できない)、TTEまたは効果的なドメイン理論モデルのようなTTEに相当する他のモデルを好むと言います。 Ko-Friedmanモデルなど
場合は、私が正しく理解し、で使用されている計算のデフォルトのモデル計算幾何学は、あるBSS(別名リアルタイムRAM、参照[BCSS98])モデル。
一方で、計算幾何学(LEDAなど)のアルゴリズムの実装では、代数的数値のみを扱っており、より高いタイプの無限オブジェクトまたは計算は関係していないようです(これは正しいですか?)。したがって、私は(おそらく素朴に)有限文字列上の古典的な計算モデルを使用してこれらの数値を処理し、通常の計算モデル(これはアルゴリズムの実装にも使用されます)を使用して正確さと複雑さを議論できるようですアルゴリズムの。
質問:
計算幾何学の研究者がBSS / real-RAMモデルの使用を好む理由は何ですか?(BSS / real-RAMモデルを使用する理由特定の計算幾何学)
前の段落で言及した(おそらく素朴な)アイデアの問題は何ですか?(計算の古典的なモデルを使用し、計算幾何学で代数的数への入力を制限する)
補遺:
アルゴリズムの問題の複雑さもあります。BSS/ real-RAMモデルで次の問題を決定するのは非常に簡単です。
二組の所与の及びは正の整数の、 ある?
それを解決するための効率的な整数RAMアルゴリズムは知られていませんが。例についてはJeffEに感謝します。
参照:
- Lenore Blum、Felipe Cucker、Michael Shub、Stephen Smale、「複雑さと実際の計算」、1998
- Klaus Weihrauch、「計算可能な分析、序論」、2000