量子コンピューターでできることの1つは(おそらくBPP +対数量子回路でも)、Pのブール値関数のフーリエ変換を近似サンプリングすることです。
フーリエ変換のサンプリングについて話すときは、以下でに従ってxを選択することを意味します。(必要に応じて、おおよそ正規化されます)。
Pの近似サンプリングブール関数のP-FOURIER SAMPLINGと呼ばれる複雑度クラスを記述できますか?このクラスに完全な問題はありますか?
計算の複雑さについて言うことができるブール関数のクラスXを考えると、Xの関数のフーリエ変換のサンプリングを近似するSAMPLING-Xと呼ぶことができます(XがBQPの場合、X-SAMPLINGはまだ量子コンピューターの力の範囲内です。)
SAMPLING-XがPにあるXの例は何ですか?SAMPLING-XがNPハードである興味深い例はありますか?
この問題には、興味深いものもいくつかあります。フーリエ側では、近似サンプルではなく、近似サンプリングによって(確率的に)有効化された決定問題について話すことができます。第一に、確率分布のクラスXから始めて、Xの分布Dをほぼサンプリングする能力と(正規化)フーリエ変換をほぼサンプリングする能力との関係を尋ねることができます。
要するに、この質問について知られていること。
更新: Martin Schwarzは、すべてのフーリエ係数自体が多項式のエントリ数のみに集中している場合、BPPでこれらの大きな係数を近似することができる(したがって、ほぼサンプリングすることもできる)と指摘しました。これは、Goldreich-Levinクシレビッツマンスール。フーリエ係数が多項式的に多くの係数に分散されるフーリエ側を近似的にサンプリングするための確率的多項式アルゴリズムがある関数の興味深いクラスはありますか?
後で追加:いくつかの具体的な問題について言及させてください。
1)Pのブール関数のフーリエ変換を近似的にサンプリングするのはどれくらい難しいか
a)スコットアーロンソンが以下のコメントで言及した1つの質問は、これがBPPにないことを示すことです。または、このタスクがBPPにある場合、何らかの崩壊が発生しているという線に沿って何か弱いものがあります。(スコットランドはこれが事実であると推測します。)
b)別の質問は、このタスクがいくつかの量子ベースの複雑度クラスに関して難しいことを示すことです。たとえば、このタスクを実行できる場合は、BPPでログ深さ量子コンピューターなどの決定問題を解決できることを示します。
2)フーリエ関数の近似サンプリングがPであるようなブール関数のクラスとは何ですか。これは、フーリエ係数が多項式の多くの係数に集中している場合ですが、これは非常に制限されているようです。
3)PHには、Xマシンが計算できるすべての関数のフーリエ変換をほぼサンプリングできる複雑なクラスXがあります。
4)n行n列の六角形グリッドでのパーコレーションの交差イベントのフーリエ変換のサンプリングの問題に特に興味がありました。