バックグラウンド
ゲートのセット(ベーシスとも呼ばれる)に対する1回限りの式は、各入力変数が1回現れる式です。読み取り1回の式は、一般に、De Morgan基底(2ビットゲートANDおよびOR、および1ビットゲートNOT)と完全なバイナリ基底(すべて2ビットゲート)で研究されます。
したがって、たとえば、2ビットのANDはどちらの基準でも1回限りの式として書き込むことができますが、2ビットのパリティはDe Morgan基準で1回だけの式として書き込むことはできません。
De Morgan基底上で1回限りの式として記述できるすべての関数のセットには、組み合わせの特性があります。たとえば、M。Karchmer、N。Linial、I。Newman、M。Saks、A。Wigdersonによる1回限りの式の組み合わせ特性化を参照してください。
質問
完全なバイナリベースで1回限りの式で計算できる関数セットの代替の特性はありますか?
簡単な質問(v2で追加)
私はまだ元の質問への回答に興味がありますが、回答を受け取っていないので、簡単な質問をするつもりだと思いました:完全なバイナリベースで数式に有効ないくつかの下限技術は何ですか?(以下にリストしたもの以外)
ここで、式のサイズ(=葉の数)の下限を設定しようとしていることに注意してください。読み取り1回の式の場合、式のサイズ=入力数です。したがって、関数が厳密にnより大きいサイズの式を必要とすることを証明できる場合、それは読み取り専用の式として表現できないことも意味します。
私は次のテクニックを知っています(ブール関数の複雑さからの各テクニックのリファレンス:Stasys JuknaによるAdvances and Frontiers):
- Nechiporukの普遍関数の方法(セクション6.2):特定の関数のサイズの下限を示します。これは、興味があるかもしれない特定の関数の下限を見つけるのに役立ちません。
- サブ関数を使用したネチポルクの定理(Sec 6.5):これは、関心のある関数の下限を提供するという意味で、適切な下限手法です。たとえば、要素の明瞭性関数のサイズはです。(そして、これはテクニックが証明できる最大の下限であり、あらゆる関数に対してです。)