グロスとタッカーによって本トポロジーグラフ理論によれば、所与の細胞埋め込み(「表面」によって、私はここにいくつかの球を意味する面上にグラフをハンドル、下記 SをN正確で球体を指す Nハンドル)、元のグラフ埋め込みの面を頂点として扱い、対応する面が元のグラフで共通するすべての側の2つの頂点間にエッジを追加することにより、デュアルマルチグラフを定義できます。
これが私の問題です。グラフを考えると、私は見つける必要があり、別のグラフG "の表面が存在するようなSとの細胞の埋め込みGのSをするようにGが「この埋め込みの二重のあるG。多くの可能なグラフG 'があることを知っています。グラフGごとに1つを見つける必要があります。
いくつか質問があります。私の現在の戦略は、(1)Gの属を決定すること、(2)S n上のGの埋め込みを見つけること、そして(3)この埋め込みの双対を見つけることです。これらのすべてのステップには既知のアルゴリズムがあります(ただし、(1)はNP-Hardです)。属の計算を迂回するG ′を見つける方法はあるのでしょうか。これは、このアプローチのボトルネックであるためです。それが私の最初の質問です。私の2番目の質問は、Gが正則であることを知っている場合、それは属の計算を容易にすることができますか?そして、3つ目の質問は、この問題の解決に役立つ参考資料の要求です。